Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:42:49.703Z Has data issue: false hasContentIssue false

Understanding Metal Oxide Surfaces at the Atomic Scale: STM Investigations of Bulk-defect Dependent Surface Processes

Published online by Cambridge University Press:  21 March 2011

Ulrike Diebold*
Affiliation:
Department of Physics, Tulane University New Orleans, LA 70118, U.S.A.
Get access

Abstract

Surface defects are important in oxide surface chemistry, because they change not only the surface geometric structure, but also affect the local electronic structure. Scanning Tunneling Microscopy (STM) images with atomic-scale resolution, in combination with area-averaging surface spectroscopies, is an ideal tool to study local surface defects and their relationship to surface reactivity. We report STM results onTiO2(110) surfaces which show the surprising influence of bulk defects on surface properties. Thereduced crystals used in this and other surface science studies contain Ti interstitials and oxygen vacancies. Re-oxidation at elevated temperatures results in the growth of additional TiO2 layers with Ti coming from the bulk of the crystal and O from the gas phase. This often result in partially incomplete surface structures with many undercoordinated atoms. The esorption behavior of elemental S, dosed at room temperature, depends on the reduction state of the sample. This is explained by a mechanism where desorption froma weaklybound precursor state competes with the availability of new adsorption sites in the form of oxygen vacancies which migrate from the bulk to the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Diebold, U., Surf. Sci. Rep. in preparation (2001)Google Scholar
2. Li, M., Hebenstreit, W. and Diebold, U., Surf. Sci. 414(1998) L951.Google Scholar
3. Li, M., Hebenstreit, W., Diebold, U., Henderson, M. A. and Jennison, D. R., Faraday Discuss 114 (1999) 245.Google Scholar
4. Li, M., Hebenstreit, W., Gross, L., Diebold, U., Henderson, M. A., Jennison, D. R., Schultz, P. A. and Sears, M. P., Surf. Sci. 437 (1999) 173.Google Scholar
5. Onishi, H. and Iwasawa, Y., Phys. Rev. Lett. 76 (1996) 791.Google Scholar
6. Bennett, R. A., Poulston, S., Stone, P. and Bowker, M., Phys. Rev. B 59 (1999) 10341.Google Scholar
7. Bennett, R. A., Stone, P. and Bowker, M., Faraday Discuss 114 (1999) 267.Google Scholar
8. Bennett, R. A., Stone, P., Price, N. J. and Bowker, M., Phys. Rev. Lett. 82 (1999) 3831.Google Scholar
9. Bennett, R. A., Stone, P., Smith, R. and Bowker, M., Surf. Sci. 454–456 (2000) 390.Google Scholar
10. Bennett, R. A., Phys. Chem. Comm. 3 (2000) (web.Google Scholar
11. Stone, P., Bennett, R. A. and Bowker, M., New J. Phys. 1 (1999) 8.Google Scholar
12. Diebold, U., Li, M., Dulub, O., Hebenstreit, E. L. D. and Hebenstreit, W., Surf. Rev. Lett. 7 (2000) 613.Google Scholar
13. Hebenstreit, E. L. D., Hebenstreit, W., Geisler, H., VentriceJr, C. A., Sprunger, P. T. and Diebold, U., Surf.Sci. Lett. submitted (2000)Google Scholar
14. Samsonov, G. V., The Oxide Handbook (IFI/Plenum, New York, 1982).Google Scholar
15. Charlton, G., Hoowes, P. B., Nicklin, C. L., Steadman, P., Taylor, J. S. G., Muryn, C. A., Harte, S. P., Mercer, J., McGrath, R., Norman, D., Turner, T. S. and Thornton, G., Phys. Rev. Lett. 78 (1997) 495.Google Scholar
16. Diebold, U., Anderson, J. F., Ng, K. O. and Vanderbilt, D., Phys. Rev. Lett. 77 (1996) 1322.Google Scholar
17. Diebold, U., Lehman, J., Mahmoud, T., Kuhn, M., Hebenstreit, W., Leonardelli, G., Schmid, M. and Varga, P., Surf. Sci. 411 (1998) 137.Google Scholar
18. Henrich, V. E. and Cox, P. A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994).Google Scholar
19. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T., Nature 388 (1997) 431.Google Scholar
20. Pan, J. M., Maschhoff, B. L., Diebold, U. and Madey, T. E., J. Vac. Sci. Technol., A 10 (1992) 2470.Google Scholar
21. Li, M., Hebenstreit, W., Diebold, U., Tyryshkin, A. M., Bowman, M. K., Glen Dunham, G. and Henderson, M. A., J.Phys. Chem. B 104 (2000) 4944.Google Scholar
22. Li, M., Hebenstreit, W. and Diebold, U., Phys. Rev. B 61 (2000) 4926.Google Scholar
23. Onishi, H., Fukui, K. and Iwasawa, Y., Bull. Chem. Soc. Jpn. 68 (1995) 2447.Google Scholar
24. Nörenberg, H., Tanner, R. E., Schierbaum, K. D., Fischer, S. and Briggs, G. A. D., Surf. Sci. 396 (1998) 52.Google Scholar
25. Hebenstreit, E. L. D., Hebenstreit, W. and Diebold, U., Surf. Sci. 461 (2000) 87.Google Scholar
26. Hebenstreit, E. L. D., Hebenstreit, W. and Diebold, U., Surf. Sci. in print (2000)Google Scholar
27. Hebenstreit, E. L. D., Hebenstreit, W., Geisler, H., C. A. VentriceJr., Hite, D., Sprunger, P. T. and Diebold, U., Phys. Rev. B submitted (2000)Google Scholar
28. Diebold, U., Hebenstreit, W., Leonardelli, G., Schmid, M. and Varga, P., Phys. Rev. Lett. 81 (1998) 405.Google Scholar
29. Henderson, M. A., Surf. Sci. 419 (1999) 174.Google Scholar
30. Diebold, U., Pan, J. M. and Madey, T. E., Surf. Sci. 333 (1995) 845.Google Scholar