Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T03:39:22.704Z Has data issue: false hasContentIssue false

Unconventional Approaches for Advanced Nanotechnology: Functional Patterning and Microfluidic Synthesis

Published online by Cambridge University Press:  26 February 2011

Kyung Choi
Affiliation:
[email protected], Bell Laboratories, Lucent Technologies, 600-700 Mountain Ave, Murray Hill, New Jersey, 07974, United States
Kenneth Shea
Affiliation:
John Rogers
Affiliation:
Get access

Abstract

Since chemists and materials scientists have been seeking for unconventional routes to synthesize and fabricate novel patterns for applied nanotechnology, we introduced useful functional polymers, which can be patternable on a variety of substrates to fabricate devices with specific functions. We introduce new silicon elastomeric polymers as a stamp material for high fidelity in nano-scale soft lithography. We also fabricated elastic photopatterns by synthesizing photocurable PDMS prepolymers. Photopatternable polymers with specific molecular recognition functions were also employed to fabricate functional patterns with specific functions for our diverse applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 (a) Kim, E., Xia, Y. N., and Whitesides, G. M., J. Am. Chem. Soc. 118, 5722 (1996). (b) Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev. 99, 1823 (1999).Google Scholar
2 (a) Blanchet, G. and Rogers, J. A., Journal of Imaging Science and Technology 47(4), 296 (2003). (b) C. J. Love, J. R. Anderson, and G. M. Whitesides, MRS Bulletin 26(7), 523 (2001).Google Scholar
3 (a) Choi, K. M. and Rogers, J. A., J. Am. Chem. Soc. 125, 4060 (2003). (b) K. M. Choi, J. Phys. Chem. 109, 21525 (2005). (c) V. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, E. Micheal, J. A. Rogers, Science 303, 1644 (2004).Google Scholar
4 Conrad, P. G., Nishmura, P. T., Aherne, D., Schwartz, B. J., Wu, D., Fang, N., Zhang, X., Roberts, J., Shea, K. J., Adv. Mater. 11, 5274 (2003).Google Scholar
5 Thorsen, T., Maerkl, S. J. and Quake, S. R., Science 298, 580 (2002).Google Scholar
6 Duan, X., Niu, C., Sahi, V., Chen, J., Parce, J. W., Empedocles, S., Goldman, J. L., Nature 425, 274 (2003).Google Scholar
7 Wu, T., Mei, Y., Cabral, J., Xu, C., Beers, K. L., J. Am. Chem. Soc. 126, 9880 (2004).Google Scholar
8 Kobayashi, J., Mori, Y., Okamoto, K., Akiyama, R., Ueno, M., Kitamori, T., Kobayashi, S., Science 304, 1305 (2004).Google Scholar
9 Haswell, S. J., Middleton, R. J., O'Sullivan, B., Skelton, V., Watts, P., Styring, P., Chem. Commun. (2001).Google Scholar