No CrossRef data available.
Article contents
Ultraviolet Assisted Pulsed Laser Deposition of Thin Oxide Films
Published online by Cambridge University Press: 10 February 2011
Abstract
The properties of Y2O3, ITO (indium tin oxide), and TaSi2 thin layers grown using a new in-situ ultraviolet (UV)-assisted pulsed laser deposition (UVPLD) technique have been studied. X-ray diffraction investigations showed that with respect to conventional PLD grown films under similar conditions, but without UV illumination, UVPLD grown films exhibited better crystallinity, especially for growth at low substrate temperatures, from 200 °C up to 450 °C, depending on the material. X-ray photoelectron spectroscopy investigations showed that UVPLD layers contained less physisorbed oxygen than the conventional PLD layers, exhibiting a better overall stoichiometry. These results suggest that during the ablation-growth process, UV radiation increases the surface mobility of adatoms and provides more reactive gaseous species. Both factors contribute to the crystalline growth and are especially effective at moderate processing temperatures, where the thermal energy available for the process is comparatively low.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999