Published online by Cambridge University Press: 01 February 2011
Prompted by renewed interest in the crystalline oxides-on-semiconductors interface, periodic density functional theory and atomistic simulation techniques are used to examine the formation of a layer of CaO on a BaO substrate. We examine how CaO islands which form at coverages less than 100% adjust to the substrate in which the cation-anion separation is substantially larger than in CaO itself. All Ca-O bond lengths in the island are shorter than that in bulk CaO. Corner O atoms in the islands are associated with particularly short Ca-O bond lengths, and the shape of the islands is dominated by (100) edges. Once formed, islands with intact edges will remain intact. Interactions between islands at larger coverages are also investigated and we see the formation of characteristic elliptical gaps and loops.