Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:34:40.031Z Has data issue: false hasContentIssue false

Ultrathin Dielectric Films Grown by Solid Phase Reaction of Pr with SiO2

Published online by Cambridge University Press:  28 July 2011

Hans-Joachim Müssig
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Jarek Dąbrowski
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Christian Wenger
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Grzegorz Łupina
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Roland Sorge
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Peter Formanek
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Peter Zaumseil
Affiliation:
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
Dieter Schmeißer
Affiliation:
Angewandte Physik-Sensorik, BTU Cottbus, PF 10 13 44, D-03013 Cottbus, Germany
Get access

Abstract

We have fabricated Pr-based high-k gate dielectric films by physical vapor deposition of metallic Pr on SiO2 under ultra-high vacuum (UHV) conditions at room temperature, followed by oxidation and annealing steps. The films have been analyzed by electrical measurements, X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). Some insight into the physical processes involved has been obtained from ab initio calculations. The high-k gate stacks consist of a SiO2-based buffer with an enhanced dielectric constant and a Pr silicate barrier with a high dielectric constant. The role of the buffer is to preserve the high quality of the SiO2/Si(001) interface, and the role of the barrier is to keep the tunneling currents low by increasing its physical thickness. A Pr film deposited on a 1.8 nm SiO2 layer, oxidized at room temperature by air, and annealed in N2 atmosphere with O2 partial pressure of 10−3 mbar results in a stack with the Capacitance Equivalent Thickness of 1.5 nm and leakage of 10−4 A/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wilk, G.D., Wallace, R.M., Anthony, J.M., J. of Appl. Phys. 89, 52435275 (2001).Google Scholar
[2] Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., and Timp, G., Nature 399, 758 (1999).Google Scholar
[3] Osten, H.-J, Dąbrowski, J., Müssig, H.-J., Fissel, A., and Zavodinsky, V., in “Predictive Simulation of Semiconductor Processing”, Dąbrowski, J. and Weber, E. R. (Eds.), Springer, Berlin 2004, p. 259.Google Scholar
[4] Chau, R.R., Kavalieros, J., Roberds, B., Schenker, R., Lionberger, D., Barlage, D., Doyle, B., Arghavani, R., Murthy, A., and Dewey, G., IEDM'2000 Techn. Digest, 45 (2000).Google Scholar
[5] Fissel, A., Dąbrowski, J., and Osten, H. J., J. Appl. Phys. 91, 8968 (2002); D. Schmeißier, H.-J. Müssig, and J. Dąbrowski, accepted for publication in Appl. Phys. Lett. (2004).Google Scholar
[6] Watanabe, H., Ikarashi, N., and Ito, F., Appl. Phys. Lett. 83, 3546 (2003).Google Scholar
[7] Wagner, C.D., Riggs, W.M., Davis, L.E., and Moulder, J.F., Handbook of X-ray photoelectron spectroscopy, (Perkin Elmer, Eden Prairie, 1978).Google Scholar
[8] CRC Handbook of Chemistry and Physics, Lide, D.R. (Ed.), 73rd edition, CRC Press, London 1993.Google Scholar