Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:38:55.534Z Has data issue: false hasContentIssue false

Ultrasonic Attenuation Peaks Near the Diffuse Transition Temperature in Solid Electrolytes with Fluorite Structure

Published online by Cambridge University Press:  21 February 2011

M. O. Manasreh
Affiliation:
Air Force Wright Aeronautical Laboratories, Materials Laboratory (AFWAL/MLPO), Wright-Patterson Air Force Base, Ohio 45433-6533
D. O. Pederson
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701
T. S. Aurora
Affiliation:
Department of Mathematics and Physics, Philadelphia College of Pharmacy and Science, Philadelphia, PA 19104
Get access

Abstract

Measurements of the ultrasonic attenuation and velocity have been made in solid electrolytes with fluorite structure, PbF2, BaF2, and CdF2, from room temperature to temperature at or above the diffuse solid electrolyte transition temperature, Tc. The ultrasonic attenuation peaks observed in this class of materials are associated only with the ionic conductivity saturation rather than in combination with crystallographic phase transition found in many other solid electrolytes. The relaxation rates and Arrhenius activation energies for anion motion above the transition temperature were obtained from the temperature dependence of the ultrasonic attenuation and the theory of local site fluctuations. The ultrasonic attenuation peaks observed for the first time in CdF2was used to define the diffuse transition temperature in this material. An Anomalous peak is also observed in the linear thermal expansion coefficient of PbF2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schroter, W. and Nolting, J., J. Phys. (Paris) Colloq. 41, C620 (1980); V. R. Belosludov, R. I. Efremova, and E. V. Matizen, Soy. Phys.-Solid State 16, 847 (1974).Google Scholar
2. (a) Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., and Hayes, W., J. Phys. C 11, 3197 (1978); (b) M. H. Dickens, W. Hayes, M. T. Hutchings, and W. G. Kleppman, J. Phys. C 12, 17 (1979); (c) M. 0. Manasreh and D. 0. Pederson, Phys. Rev. B30, 3482 (1984).Google Scholar
3. Hayes, W., J. Phys. (Paris) Colloq. 41, C67 (1980).Google Scholar
4. Catlow, C. R. A., Comments Solid State Phys. 9, 157 (1980).Google Scholar
5. Hutchings, M. T., Clausen, K., Dickens, M. H., Hayes, W., Kjems, T. K., Schnabel, P. G., and Smith, C., J. Phys. C 17, 3903 (1984).Google Scholar
6. Woodruff, T. O. and Ehrenreich, H., Phys. Rev. 123, 1553 (1961); H. Bommel and K. Dransfeld, Phys. Rev. 117, 1245 (1960).Google Scholar
7. Akhieser, A., J. Phys. (Moscow) 1, 277 (1939).Google Scholar
8. Gingis, A. D., Morozov, A. I., Stankovskii, B. A., and Golotsvan, V. V., Soy. Phys.-Solid State 11, 1868 (1969); S. K. Kor, U. S. Tandon, and G. Rai, Phys. Rev. B5, 4143 (1972).Google Scholar
9. Huberman, B. A. and Martin, R. M., Phys. Rev. B13, 1498 (1976).Google Scholar
10. Boyce, J. B. and Huberman, B. A., Phys. Rep. 51, 189 (1979).Google Scholar
11. Kanashiro, T., Michihiro, Y., Ozaki, J., Ohno, T., and Kojima, A., J. Phys. Soc. Jpn. 56, 560 (1987).Google Scholar
12. McSkimin, H. J., J. Acoust. Soc. Am. 33, 12 (1961); H. J. McSkimin and P. Andreatch, Jr., J. Acoust. Soc. Am. 34, 609 (1962).Google Scholar
13. Pederson, D. O. and Brewer, J. A., Phys. Rev. B16, 4546 (1977); R. B. Foster, J. A. Brewer, S. R. Montgomery, and D. 0. Pederson, J. Acoust. Soc. Am. 73, 352 (1983); M. 0. Manasreh and D. O. Pederson,. Acoust Soc Am. 75, 1766 (1984).Google Scholar
14. Truell, R., Elbaum, C., and Chick, B. B., Ultrasonic Methods in Solid State Physics, (Academic Press, New York, 1969).Google Scholar
15. Papadakis, E. P., J. Acoust. Soc Am. 40, 863 (1966).Google Scholar
16. Aurora, T. S., Day, S. M., King, V., and Pederson, D. O., Rev. Sci. Instrum. 55, 149 (1984).Google Scholar
17. Roberts, R. B. and White, G. K., J. Phys. C 19, 7167 (1986).Google Scholar
18. Oberschmidt, J. and Lazarus, D., Phys. Rev. B21, 5823 (1980).Google Scholar
19. Azimi, A., Carr, V. M., Chadwick, A. V., Kirkwood, F. G., and Saghafian, R., J. Phys. Chem. Solids 45, 23 (1984).Google Scholar
20. Oberschmidt, J. and Lazarus, D., Phys. Rev. B21, 2952 (1980).Google Scholar
21. Benz, R., Z. Phys. Chem. (Frankfurt am Main) 95, 25 (1975), with values deduced in Ref. 7.Google Scholar
22. Gordon, R. E. and Strange, J. H., J. Phys. C11, 3213 (1978).Google Scholar
23. Carr, V. M., Chadwick, A. V., and Figueroa, D. R., J. Phys. 12, C7337 (1976).Google Scholar
24. Smolenskii, G. A., Sotnikov, A. V., and Yushin, N. K., Soy. Phys. - Solid State 26, 1846 (1984).Google Scholar
25. Suptitz, P., Brink, E., and Becker, D., Phys. Status Solidi B54, 713 (1972).Google Scholar
26. Kessler, A. and Caffyn, J. E., J. Phys. C 5, 1134 (1972).Google Scholar
27. March, N. H., Richardson, D. D., and Tosi, M. P., Solid State Commun. 35, 903 (1980).Google Scholar