Published online by Cambridge University Press: 15 February 2011
A single picosecond pulse laser annealing of ion-implanted Si is reviewed as ultra-short pulse laser annealing, comparing them with nanosecond pulse and picosecond-pulse train annealing. In order to clarify the physical mechanism of pulsed laser annealing, the dynamic behavior of the amorphous to crystalline transition has been investigated by means of time-dependent optical reflectivity measurement at 0.63 µm (cw) and 1.06 µm (30-ps pulse itself) under the irradiation of the annealing beam of a single 30-ps laser pulse at 1.06 µm. A tentative model is proposed for explaining the results and further problems which remain to be resolved are discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.