Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:50:11.975Z Has data issue: false hasContentIssue false

Ultrashallow Junction Formation and Gate Activation in Deep-Submicron CMOS

Published online by Cambridge University Press:  17 March 2011

P. A. Stolk
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
F. N. Cubaynes
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
V. M. H. Meyssen
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
G. Mannino
Affiliation:
INFM and Dipartimento di Fisica, Universitä di Catania, Catania, Italy
N. E. B. Cowern
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
J. P. van Zijl
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
F. Roozeboom
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
J. F. C. Verhoeven
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
J. G. M. van Berkum
Affiliation:
Philips Research Laboratories, CFT, Eindhoven, The Netherlands
W. M. van de Wijgert
Affiliation:
Philips Research Laboratories, CFT, Eindhoven, The Netherlands
J. Schmitz
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
H.P. Tuinhout
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
P. H. Woerlee
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Get access

Abstract

This paper addresses the optimization of ion implantation and rapid thermal annealing for the fabrication of shallow junctions and the activation of polycrystalline silicon gates in deepsubmicron CMOS transistors. Achieving ultrashallow, low-resistance junctions was studied by combining low-energy B and As implantation with spike annealing. In addition, experiments using B doping marker superlattices were performed to identify the critical physical effects underlying dopant activation and diffusion. The combination of high ramp rates (∼100 °C/s) and ∼1 s cycles at temperatures as high as 1100 °C can be used to improve dopant activation without inducing significant thermal diffusion after TED has completed. MOS capacitors were used to identify the implantation and annealing conditions needed for adequate activation of the gate electrode. In comparison to the conventional recrystallized amorphous Si gates, it was found that fine-grained poly-Si allows for the use of lower processing temperatures or shorter annealing times while improving the gate activation level. The fine-grained crystal structure enhances the de-activation of B dopants in PMOS gates during the thermal treatments following gate activation. Yet, the resulting dopant loss stays within acceptable limits as verified by excellent 0.18 μm device performance. The feasibility of spike annealing and poly-Si gate materials for 100-nm technology was proven by full integration using gate lengths down to 80 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jones, E.C. and Ishida, E., Mat. Sc. Eng. Reports R24, 1 (1998).Google Scholar
2International Technology Roadmap for Semiconductors, Ed. 1999.Google Scholar
3 Roozeboom, F. (editor), Advances in Rapid Thermal and Integrated Processing (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996).10.1007/978-94-015-8711-2Google Scholar
4 Shishiguchi, S., Mineji, A., Hayashi, T., and Saito, S., VLSI Tech. Symp. 1997, 89 (1997).10.1109/VLSIT.1997.623709Google Scholar
5 Saito, S., Shishiguchi, S., Hamada, K., and Hayashi, T., Mat. Chem. Phys. 54, 49 (1998).10.1016/S0254-0584(98)00015-7Google Scholar
6 Current, M.I., Lopes, D., Foad, M., and Boyd, W., Mat. Chem. Phys. 54, 33 (1998).10.1016/S0254-0584(98)00066-2Google Scholar
7 Agarwal, A., Fiory, A.T., Gossmann, H.-J.L., Rafferty, C.S., and Frisella, P., Mat. Sci. Semicond. Proc. 1, 237 (1998).10.1016/S1369-8001(98)00030-4Google Scholar
8 Agarwal, A., Gossmann, H.-J., and Fiory, A.T., Mat. Res. Soc. Symp. Proc. 568, 19 (1999).10.1557/PROC-568-19Google Scholar
9 Mehrotra, M., Hu, J.C., Jain, A., Shiau, W., Hattangady, S., Reddy, V., Aur, S., and Rodder, M., Tech. Digest IEDM-99, 419 (1999).Google Scholar
10 Cao, M., Voorde, P. Vande, Cox, M., and Greene, W., IEEE Electron Dev. Lett. 19, 291 (1998).Google Scholar
11 Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).10.1063/1.364452Google Scholar
12 Mannino, G., Stolk, P.A., Cowern, N.E.B., Boer, W.B. de, Dirks, A.G., Roozeboom, F., Berkum, J.G.M. van, and Toan, N.N., to be published.Google Scholar
13 Meyssen, V.M.H., Stolk, P.A., Zijl, J.P. van, Berkum, J.G.M. van, Wijgert, W.M. van de, to be published.Google Scholar
14 Yu, B., Ju, D.-H., Lee, W.-C., Kepler, N., King, T.-J., and Hu, C., IEEE Trans. Electron Dev. 45, 1253 (1998).Google Scholar
15 Schmitz, J., Tuinhout, H.P., Montree, A.H., Ponomarev, Y.V., Stolk, P.A., and Woerlee, P.H., Proc. ESSDERC 1999, 156 (1999).Google Scholar
16Throughout this paper, oxide thicknesses will be quoted as derived from optical ellipsometry.Google Scholar
17 Pelgrom, M.J.M., Duinmaijer, A.C.J., and Welbers, A.P.G., IEEE J. Solid-State Circ. 24, 1433 (1989).10.1109/JSSC.1989.572629Google Scholar
18 Stolk, P.A., Widdershoven, F.P., and Klaassen, D.B.M., IEEE Trans. Electron Dev. 45, 1960 (1998).10.1109/16.711362Google Scholar
19 Cubaynes, F.N., et al. to be published.Google Scholar
20 Nédélec, S. and Mathiot, D., Semicond. Sci. Technol. 12, 1438 (1997).10.1088/0268-1242/12/11/019Google Scholar
21 Ponomarev, Y.V., Stolk, P.A., Brandenburg, A.C.M.C. van, Roes, R., Montree, A.H., Schmitz, J., Woerlee, P.H., Tech. Digest IEDM-98, 635 (1998).Google Scholar
22The off-state current is measured with the gate biased to 0 V, and the drain to -VDD. The onstate current is measured by changing the gate bias to -VDD. The supply voltage VDD is 1.8 V for 0.18 μm technology.Google Scholar
23 Graaff, H.C. de and Klaassen, F.M., Compact Transistor Modeling for Circuit Design, (Springer Verlag, 1990, pp. 325329).10.1007/978-3-7091-9043-2Google Scholar