Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T17:09:03.077Z Has data issue: false hasContentIssue false

Ultra-Low Temperature Poly-Si Thin Film by Excimer Laser Recrystallization For Flexible Substrates

Published online by Cambridge University Press:  15 February 2011

Sang-Myeon Han
Affiliation:
School of Electrical Engineering (#50), Seoul National University, Seoul, 151-742, Korea Phone: +82-2-880-7992, Fax: +82-2-883-0827, E-mail:[email protected]
Min-Cheol Lee
Affiliation:
School of Electrical Engineering (#50), Seoul National University, Seoul, 151-742, Korea Phone: +82-2-880-7992, Fax: +82-2-883-0827, E-mail:[email protected]
Su-Hyuk Kang
Affiliation:
School of Electrical Engineering (#50), Seoul National University, Seoul, 151-742, Korea Phone: +82-2-880-7992, Fax: +82-2-883-0827, E-mail:[email protected]
Moon-Young Shin
Affiliation:
School of Electrical Engineering (#50), Seoul National University, Seoul, 151-742, Korea Phone: +82-2-880-7992, Fax: +82-2-883-0827, E-mail:[email protected]
Min-Koo Han
Affiliation:
School of Electrical Engineering (#50), Seoul National University, Seoul, 151-742, Korea Phone: +82-2-880-7992, Fax: +82-2-883-0827, E-mail:[email protected]
Get access

Abstract

An ultra-low temperature (< 200°C) polycrystalline silicon (poly-Si) film is fabricated for the plastic substrate application using inductively coupled plasma chemical vapor deposition (ICP-CVD) and excimer laser annealing. The precursor active layer is deposited using the SiH4/He mixture at 150°C (substrate). The deposited silicon film consists of crystalline component as well as hydrogenated amorphous component. The hydrogen content in the precursor layer is less than 5 at%. The grain size of the precursor active silicon film is about 200nm and it is increased up to 500nm after excimer laser irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Theiss, S. D., Carey, P. G., Smith, P. M., Wickboldt, P., Sigmon, T. W., Tung, Y. J., King, T.-J., IEDM 98, p.257260 Google Scholar
[2] Gosain, D.P., Noguchi, T., Usui, S., Jpn. J. Appl. Phys., Vol.39 (2000), pp.L179–L181Google Scholar
[3] Young, N.D., French, I.D., Trainor, M. J., Murley, D. T., McCulloch, D. J., Wilks, R. W., IDW 99, p.219222 Google Scholar
[4] Lengsfeld, P., Nickel, N. H., Fuhs, W., Appl. Phys. Lett., Vol. 76, No. 13, 2000, p.16801682 Google Scholar
[5] Kim, S. K., Cho, S. I., Choi, Y. J., Cho, K. S., Pietruszko, S.M., Jang, J., Thin Solid Films, 337 (1999) 200202 Google Scholar
[6] Srinivasan, E., Lloyd, D. A., Parsons, G. N., J. Vac. Sci. Technol. A15(1), Jan/Fab, 1997, p.7784 Google Scholar
[7] Moon, B. Y., Youn, J. H., Won, S. H., Jang, J., solar Energy Mat. Solar Cells, 69 (2001) p.139145 Google Scholar