Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:42:01.405Z Has data issue: false hasContentIssue false

Ultrafast Transient Absorption Spectroscopy Investigations of Excited State Dynamics in SWNT/Polymer Composites

Published online by Cambridge University Press:  01 February 2011

David J. Styers-Barnett
Affiliation:
Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599–3290
Steven P. Ellison
Affiliation:
Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599–3290
Cheol Park
Affiliation:
National Institute of Aerospace, NASA Langley Research Center, MS 226, Hampton, VA 23681–2199
Kristopher E. Wise
Affiliation:
National Institute of Aerospace, NASA Langley Research Center, MS 226, Hampton, VA 23681–2199
John M. Papanikolas
Affiliation:
Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599–3290
Get access

Abstract

Wavelength-resolved femtosecond transient absorption spectroscopy is used to follow the electronic dynamics of single-walled carbon nanotubes in polymers following visible and near IR photoexcitation. Electron-hole (e-h) pairs give rise to sharp features in the transient spectra that decay in amplitude and exhibit rapid spectral shifts. The decay reflects (e-h) recombination on both short (1.3 ps) and long (35 ps) time scales. Transient spectra also exhibit a broad photobleach at early times that arises from the cooling of a hot electron gas created via excitation at the red edge of a π-plasmon band.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bursill, L. A., Stadelmann, P. A., Peng, J. L., and Prawer, S., Phys. Rev. B 49, 2882 (1994).Google Scholar
2. Arnold, M. S. et al., Nano Lett. 3, 1549 (2003).Google Scholar
3. O'Connell, M. J. et al., Science 297, 593 (2002).Google Scholar
4. Knupfer, M. et al., Carbon 37, 733 (1999).Google Scholar
5. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X., and Louie, S. G., Phys. Rev. Lett. 92, 077402 (2004).Google Scholar
6. Chiang, I. W. et al., J. Phys. Chem. B 105, 8297 (2001).Google Scholar
7. Lin, M. F. and Shung, W.-K., Phys. Rev. B 50, 17744 (1994).Google Scholar
8. Kane, C. L. and Mele, E. L., Phys. Rev. Lett. 90, 207401 (2003).Google Scholar
9. Pedersen, T. G., Phys. Rev. B 67, 073401 (2003).Google Scholar
10. Harris, P. J. F., Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 1999).Google Scholar
11. Ouyang, M., Huang, J. L., and Lieber, C. M., Acc. Chem. Res. 35, 1018 (2002).Google Scholar
12. Souza, A. G. et al., Phys. Rev. B 65, (2002).Google Scholar
13. Ma, Y.-Z. et al., J. Chem. Phys. 120, 3368 (2004).Google Scholar
14. Ostojic, G. N. et al., Phys. Rev. Lett. 92, 117402 (2004).Google Scholar
15. Huxtable, S. T. et al., Nature Materials 2, 731 (2003).Google Scholar
16. Kono, J. et al., Appl. Phys. A 78, 1093 (2004).Google Scholar
17. Hagen, A., Moos, G., Talalaev, V., and Hertel, T., Appl. Phys. A 78, 1137 (2004).Google Scholar
18. Huang, L., Pedrosa, H. N., and Krauss, T. D., Phys. Rev. Lett. 93, 017403 (2004).Google Scholar
19. Lauret, J. S. et al., Phys. Rev. Lett. 90, (2003).Google Scholar
20. Lauret, J. S. et al., Physica E (Amsterdam) 17, 380 (2003).Google Scholar
21. Korovyanko, O. J. et al., Phys. Rev. Lett. 92, 017403 (2004).Google Scholar
22. Hertel, T., Fasel, R., and Moos, G., Appl. Phys. A 75, 449 (2002).Google Scholar
23. Ichida, M. et al., Physica B (Amsterdam) 323, 237 (2002).Google Scholar
24. Hertel, T. and Moos, G., Phys. Rev. Lett. 84, 5002 (2000).Google Scholar
25. Tatsuura, S. et al., Adv. Mat. 15, (6), 534 (2003).Google Scholar
26. Link, S. et al., Phys. Rev. B 61, 6086 (2000).Google Scholar
27. Link, S. and El-Sayed, M. A., J. Phys. Chem. B 103, 8410 (1999).Google Scholar
28. Shaw, G. B., Brown, C. L., and Papanikolas, J. M., J. Phys. Chem. A 106, 1483 (2002).Google Scholar
29. Styers-Barnett, D. J., Park, C., Wise, K. E., and Papanikolas, J. M., In Preparation.Google Scholar
30. Park, C.; Ounaies, Z.; Watson, K. A.; Crooks, R. E.; Smith, J. Jr; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St. Clair, T. L. Chemical Physics Letters 2002, 364, 303308.Google Scholar
Park, C.; Crooks, R.; Siochi, E. J.; Harrison, J. S.; Evans, N.; Kenik, E. Nanotechnology 2003, 14, L11L14.Google Scholar