Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:28:15.135Z Has data issue: false hasContentIssue false

Ultra-fast Time-Resolved Electron Diffraction of Strongly Driven Phase Transitions on Silicon Surfaces

Published online by Cambridge University Press:  31 January 2011

Simone Möllenbeck
Affiliation:
[email protected], University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Anja Hanisch-Blicharski
Affiliation:
[email protected], University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Paul Schneider
Affiliation:
[email protected], University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Manuel Ligges
Affiliation:
[email protected], University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Ping Zhou
Affiliation:
[email protected], University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Martin Kammler
Affiliation:
[email protected], United States
Boris Krenzer
Affiliation:
[email protected], University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Michael Horn-von Hoegen
Affiliation:
[email protected], United States
Get access

Abstract

The dynamics of strongly driven phase transitions at surfaces are studied by ultra-fast time-resolved reflection high energy electron diffraction. The surfaces are excited by an intense fs-laser pulse (pump) and probed by an ultra-short electron pulse with variable time delay. The order-disorder phase transition from a c(4×2) to a (2×1) of the bare Si(001) surface shows a transient decrease of the intensity of the c(4×2) spots which recovers on a time scale of a few hundred picoseconds indicating the excitation of the phase transition. On Si(111) a monolayer of Indium induces a (4×1) reconstruction which undergoes a Peierls like phase transition to a (8ד2”) reconstruction below 100 K. Upon laser excitation at a temperature of 40 K the phase transition was strongly driven. The (8ד2”)-diffraction spots instantaneously disappears, while the intensity of the (4×1)-spots increases. This increase of the (4×1) spot intensity excludes an explanation by the Debye-Waller-Effect and is evidence for a true structural phase transition at a surface.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Janzen, A. Krenzer, B. Heinz, O. Zhou, P. Thien, D. Hanisch, A. Meyer, F.J. Heringdorf, zu, Linde, D. von der, and Hoegen, M. Horn-von, Rev. of Sci. Instr. 78, 013906 (2007).Google Scholar
2 Janzen, A. Krenzer, B. Zhou, P. Linde, D. von der, and Hoegen, M. Horn-von, Surf. Sci. 600, 4094 (2006).Google Scholar
3 Krenzer, B. Janzen, A. Zhou, P. Linde, D. von der, and Hoegen, M. Horn-von, New J. of Phys. 8, 190 (2006).Google Scholar
4 Hanisch, A. Krenzer, B. Pelka, T. Möllenbeck, S., and Hoegen, M. Horn-von, Phys. Rev. B77, 125410 (2008).Google Scholar
5 Krenzer, B. Hanisch-Blicharski, A., Schneider, P. Payer, Th., Möllenbeck, S., Osmani, O. Kammler, M. Meyer, R. and Hoegen, M. Horn-von, Phys. Rev. B80, 024307 (2009).Google Scholar
6 Kury, P. Hild, R. Thien, D. Günter, H.L., Meyer, F.J. Heringdorf, zu, and Hoegen, M. Horn-von, Rev. of Sci. Instr. 76, 083906 (2005).Google Scholar
7 Wolkow, R.A. Phys. Rev. Lett. 68, 2636 (1992).Google Scholar
8 Matsumoto, M. Fukutani, K. and Okano, T. Phys. Rev. Lett. 90, 106163 (2003).Google Scholar
9 Tabata, T. Aruga, T. and Murata, Y. Surf. Sci. 179, L63 (1987).Google Scholar
10 Hata, K. Yoshida, S. and Shigekawa, H. Phys. Rev. Lett. 89, 286104 (2002).Google Scholar
11 Kawai, H. and Narikiyo, O. J. Phys. Soc. Jpn., 73, 417 (2004).Google Scholar
12 Pennec, Y. Hoegen, M. Horn-von, Zhu, X. Fortin, D.C. and Freeman, M.R. Phys. Rev. Lett. 96, 026102 (2006).Google Scholar
13 Weinelt, M. Kutschera, M. Fauster, T. and Rohlfing, M. Phys. Rev. Lett. 92, 126801 (2004).Google Scholar
14 Yeom, H.W. S.Takeda, Rotenberg, E. Matsuda, I. Horikoshi, K. Schaefer, J. Lee, C.M. Kevan, S.D. Ohta, T. Nagao, T. and Hasegawa, S. Phys. Rev. Lett. 82, 4898 (1999).Google Scholar
15 Ryjkov, S.V. Nagao, T. Lifshits, V.G. and Hasegawa, S. Surf. Sci. 488, 15 (2001).Google Scholar
16 Gallus, O., TPillo, h. Hengsberger, M. Segovia, P. and Baer, Y. Euro Phys. J. B20, 313 (2001).Google Scholar
17 Lin, B. and Elsayed-Ali, H.E., Surf. Sci. 498, 275 (2002).Google Scholar
18 Siwick, B.J. Dwyer, J.R. Jordan, R.E. and Miller, R.J.D. Chem. Phys. 299, 285 (2004).Google Scholar
19 Schmitt, F. Kirchmann, P.S. Bovensiepen, U. Moore, R.G. Rettig, L. Krenz, M. Chu, J.H. Ru, N. Perfetti, L. Lu, D.H. Wolf, M. Fisher, I.R. Shen, Z.X. Science 321, 1649 (2008).Google Scholar