Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:42:01.995Z Has data issue: false hasContentIssue false

Ultrafast Silicon Based Internal Photoemission Detectors

Published online by Cambridge University Press:  10 February 2011

M. Löken
Affiliation:
Institut für Schicht- und lonentechnik (ISI-IT), Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany
Th. Lipinsky
Affiliation:
Institut für Schicht- und lonentechnik (ISI-IT), Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany
L. Kappius
Affiliation:
Institut für Schicht- und lonentechnik (ISI-IT), Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany
S. Mantl
Affiliation:
Institut für Schicht- und lonentechnik (ISI-IT), Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany
Ch. Buchal
Affiliation:
Institut für Schicht- und lonentechnik (ISI-IT), Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany (e-mail: [email protected])
Get access

Abstract

We have studied different metal-silicon-metal (MSM) Schottky barrier photodiodes for the detection of visible and infrared light. We investigated the different Schottky barriers from Ti, Cr and Pt. At infrared wavelengths, the Schottky contacts provide electrons and holes by “internal photoemission” into the Si. The lowest Schottky barrier determines the long wavelength cutoff and the current noise. The temporal response was measured byultrashort (100 fs) laser pulses from a Ti:A1203 laser, which were converted by an optical parametric oscillator to a wavelength of 1.1 to 1.6 μm. The measurements were performed between 30 K and room temperature. The best detectors show a pulse width of 3.2ps FWHM at 1.25 μm wavelength and room temperature. To our knowledge this is the fastest infrared response for silicon based diodes ever reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Buchal, Ch., Löken, M., MRS Bulletin 23, 4 (1998) p. 55 Google Scholar
2. Löken, M., Kappius, L., Mantl, S., Buchal, Ch., Electronics Lett. 34, 10 (1998) p. 1027 Google Scholar
3. Siegert, M., Löken, M., Glingener, Ch., Buchal, Ch., IEEE J. Select. Topics in Quantum Electr. 4, 6 (1998) p. 970 Google Scholar
4. Mantl, S., Mat. Sci. Rep. 8 (1992) p. 1 Google Scholar
5. Sullivan, J. P., Tung, R. T., Eaglesham, D. J., Schrey, F., Graham, W. R., J. Vac. Sci. Techn. B 11 (4) (1993) p. 1564 Google Scholar
6. Auston, D. H., Phys. Today 43 (1990) p. 46 Google Scholar
7. Liu, M. Y. and Chou, S. Y., Proc. SPIE 2022 (1993) p. 76 Google Scholar
8. Alexandrou, S., Wang, C.-C., Hsiang, T. Y., Liu, M. Y., Chou, S. Y., Appl. Phys. Lett. 62 (20) (1993) p. 2507 Google Scholar
9. Liu, M. Y., Chen, E., Chou, S. Y., ibid. 65 (7) (1994) p. 887 Google Scholar
10. Wang, C.-C., Alexandrou, S., Jacobs-Perkins, D., Hsiang, T. Y., ibid. 64 (26) (1994) p. 3578 Google Scholar
11. Chen, E., Chou, S. Y., ibid. 70 (6) (1997) p. 753 Google Scholar
12. Rüders, F., Kim, J., Hacke, M., Mesters, S., Buchal, Ch., Mantl, S., Thin Solid Films 24 (1997) p. 294 Google Scholar
13. Sagnes, I., Campidelli, Y., Chevalier, F., Bodnar, S., Renard, C., Badoz, P. A., in “Silicides, Germanides and Their Interface”, eds. Fathauer, R. W., Mantl, S., Schowalter, L. J., Tu, K. N. (Mat. Res. Soc. Symp. Proc. 320, Pittsburgh, 1994) p. 65 Google Scholar
14. Schwarz, C., Känel, H. von, J. Appl. Phys. 79, 11 (1996) p. 8798 Google Scholar