Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T12:26:19.087Z Has data issue: false hasContentIssue false

Ultrafast Energy And Electron Transfer In Conjugated Oligomer-Fullerene Molecules

Published online by Cambridge University Press:  21 March 2011

P.A. van Hal
Affiliation:
Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
R.A.J. Janssen
Affiliation:
Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
G. Lanzani
Affiliation:
Istituto Nazionale per la Fisica della Materia, C.E.Q.S.E.-C.N.R., Dipartimento di Fisica, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
G. Cerullo
Affiliation:
Istituto Nazionale per la Fisica della Materia, C.E.Q.S.E.-C.N.R., Dipartimento di Fisica, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
M. Zavelani-Rossi
Affiliation:
Istituto Nazionale per la Fisica della Materia, C.E.Q.S.E.-C.N.R., Dipartimento di Fisica, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
S. De Silvestri
Affiliation:
Istituto Nazionale per la Fisica della Materia, C.E.Q.S.E.-C.N.R., Dipartimento di Fisica, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
Get access

Abstract

The intramolecular photoinduced energy and electron transfer within a fullereneoligothiophene-fullerene triad with nine thiophene units (C60-9T-C60) and an oligo(p-phenylene vinylene)-fullerene dyad with four phenyl groups (OPV4-C60) is investigated with femtosecond pump-probe spectroscopy with sub-10 fs and 200 fs time resolution in solvents of different polarity. Photoexcitation of the π-conjugated oligomer moiety in the triad and dyad results in an ultrafast singlet-energy transfer reaction to create the fullerene singlet-excited state with a time constant of 150-190 fs, irrespective of the polarity of the medium. In a polar solvent, intramolecular electron transfer occurs from the oligomer moiety to the C60 moiety with a time constant of 10-13 ps as a secondary reaction, subsequent to the ultrafast singlet-energy transfer. The charge-separated state has a lifetime of 50-80 ps and recombines to the ground state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tang, C.W., Appl. Phys. Lett. 48, 183 (1986).Google Scholar
2 Währle, D. and Meissner, D., Adv. Mater. 3, 129 (1991).Google Scholar
3 Schän, J.H., Kloc, Ch., Bucher, E., and Batlogg, B., Nature 403, 408 (2000).Google Scholar
4 Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., and Holmes, A.B., Nature 376, 498 (1995).Google Scholar
5 Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A.J., Science 270, 1789 (1995).Google Scholar
6 Gransträm, M., Petritsch, K., Arias, A.C., Lux, A., Andersson, M.R. and Friend, R.H., Nature 395, 257 (1998).Google Scholar
7 Jenekhe, S.A. and Yi, S., Appl. Phys. Lett. 77, 2635 (2000).Google Scholar
8 Sariciftci, N.S., Braun, D., Zhang, C., Srdanov, V.I., Heeger, A.J., Stucky, G., and Wudl, F., Appl. Phys. Lett. 62, 585 (1993).Google Scholar
9 Brabec, C.J., Padinger, F., Hummelen, J.C., Janssen, R.A.J., and Sariciftci, N.S., Synth. Met. 102, 861 (1999).Google Scholar
10 Colvin, V.L., Schlamp, M.C., and Alivisatos, A.P., Nature 370, 354 (1994).Google Scholar
11 Greenham, N., Peng, X.G., and Alivisatos, A.P., Phys. Rev. B. 54, 17628 (1997).Google Scholar
12 Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissärtel, F., Salbeck, J., Spreitzer, H., and Grätzel, M., Nature 385, 583 (1998).Google Scholar
13 Schän, J.H., Kloc, Ch., and Batlogg, B., Appl. Phys. Lett. 77, 2473 (2000).Google Scholar
14 Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromerz, T., and Hummelen, J.C., Appl. Phys. Lett. 78, 841 (2001).Google Scholar
15 Dhanabalan, A., Duren, J.K.J. van, Hal, P.A. van, Dongen, J.L.J. van, and Janssen, R.A.J. Adv. Funct. Mater. 11, (2001) in press.Google Scholar
16 Brabec, C.J., Winder, C., Sariciftci, N.S., Hummelen, J.C., Dhanabalan, A., Hal, P.A. van and Janssen, R.A.J., submitted to Appl Phys. Lett. Google Scholar
17 Sariciftci, N.S., Smilowitz, L., Heeger, A.J., and Wudl, F., Science 258, 1474 (1992).Google Scholar
18 Kraabel, B., McBranch, D., Sariciftci, N.S., and Heeger, A.J., Phys. Rev. B 50, 18543 (1994).Google Scholar
19 Kraabel, B., Hummelen, J.C., Vacar, D., Moses, D., Sariciftci, N.S., and Heeger, A.J., J. Chem. Phys. 104, 4267 (1996)Google Scholar
20 Brabec, C.J., Zerza, G., Sariciftci, N.S., Cerullo, G., Silvestri, S. De, Luzzati, S., and Hummelen, J.C., Chem. Phys. Lett., in press.Google Scholar
21 Meskers, S.C.J., Hal, P.A. van, Spiering, A.J.H., Meer, A.F.G. van der, Hummelen, J.C., Janssen, R.A.J., Phys. Rev. B. 61, 9917 (2000).Google Scholar
22 Martín, N., Sánchez, L., Illescas, B., and Pérez, I., Chem. Rev. 98, 2527 (1998).Google Scholar
23 Prato, M., J. Mater. Chem. 7, 1097 (1997).Google Scholar
24 Imahori, H. and Sakata, Y., Adv. Mater. 9, 537 (1997).Google Scholar
25 H. Imahori and Sakata, Y., Eur. J. Org. Chem. 2445 (1999).Google Scholar
26 Hal, P.A. van, Knol, J., Langeveld-Voss, B.M.W., Meskers, S.C.J., Hummelen, J.C., and Janssen, R.A.J., J. Phys. Chem. A 104, 5964 (2000).Google Scholar
27 Segura, J.L., Gómez, R., Martín, N., Luo, C., and Guldi, D.M., Chem. Commun. 701 (2000)Google Scholar
28 Martini, I.B., Ma, B., Ros, T. Da, Helgeson, R., Wudl, F., and Schwartz, B.J., Chem. Phys. Lett. 327, 253 (2000).Google Scholar
29 Eckert, J.-F., Nicoud, J.-F., Nierengarten, J.-F., Liu, S.-G., Echegoyen, L., Barigelletti, F., Armaroli, N., Ouali, L., Krasnikov, V., and Hadziioannou, G., J. Am. Chem. Soc. 122, 7467 (2000).Google Scholar
30 Peeters, E., Hal, P.A. van, Knol, J., Brabec, C.J., Sariciftci, N.S., Hummelen, J.C., and Janssen, R.A.J., J. Phys. Chem. B 104, 10174 (2000).Google Scholar
31 Apperloo, J.J., Martineau, C., Hal, P.A. van, Roncali, J., and Janssen, R.A.J., submitted to J. Phys. Chem. B.Google Scholar
32 Cerullo, G., Nisoli, M., and Silvestri, S. De, Appl. Phys. Lett. 71, 3616 (1997).Google Scholar
33 Cerullo, G., Nisoli, M., Stagira, S., and Silvestri, S. De, Opt. Lett. 16, 1283 (1998).Google Scholar
34 Cerullo, G., Lanzani, G., Muccini, M., Taliani, C., and Silvestri, S. De, Phys. Rev. Lett. 83, 231 (2000).Google Scholar
35 Cerullo, G., Lanzani, G., Pallaro, L., and Silvestri, S. De, J. Molec. Struct. 521, 261 (2000).Google Scholar
36 Lanzani, G., Cerullo, G., Zavelani-Rossi, M., and Silvestri, S. De, Synth. Met. 116, 1 (2001).Google Scholar
37 Cerullo, G., Lanzani, G., Zavelani-Rossi, M., Silvestri, S. De, Comoretto, D., Moggio, I., and Dellepiane, G., Synth. Met. 116, 57 (2001).Google Scholar
38 Muccini, M., Lunedei, E., Bree, A., Horowitz, G., Garnier, F., and Taliani, C., J. Chem. Phys. 108, 7327 (1998).Google Scholar
39 Weller, A.Z., Phys. Chem. Neue Folge 133, 93 (1982).Google Scholar
40 Cerullo, G., Lanzani, G., Silvestri, S. De, Egelhaaf, H.-J., Lüer, L., and Oelkrug, D., Phys. Rev. B 62, 2429 (2000).Google Scholar
41 Peeters, E., Marcos, A., Meskers, S.C.J., and Janssen, R.A.J., J. Chem. Phys. 112, 9445 (2000).Google Scholar
42 Ebbesen, T.W., Tanigaki, K., and Kuroshima, S., Chem. Phys. Lett. 181, 501 (1991).Google Scholar
43 Martin, N., Sanchez, L., Herranz, M.A., and Guldi, D. M., J. Phys. Chem. A 104, 4646 (2000).Google Scholar