Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:35:43.101Z Has data issue: false hasContentIssue false

Ultra high resolution, low temperature, direct metal patterning by selective laser processing of solution deposited metal nanoparticles

Published online by Cambridge University Press:  17 April 2019

Seung H. Ko
Affiliation:
Applied Nano Tech & Science lab, KAIST, Daejeon, Korea Laser Thermal Lab, University of California, Berkeley, California 94720-1740, USA
Dong Yeol Yang
Affiliation:
Laser Thermal Lab, University of California, Berkeley, California 94720-1740, USA
Heng Pan
Affiliation:
Laser Thermal Lab, University of California, Berkeley, California 94720-1740, USA
Jean M. Frechet
Affiliation:
Chemistry Dept., University of California, Berkeley, California 94720-1740, USA
Yong Son
Affiliation:
Applied Nano Tech & Science lab, KAIST, Daejeon, Korea
Tae Woo Lim
Affiliation:
Applied Nano Tech & Science lab, KAIST, Daejeon, Korea
Junyeob Yeo
Affiliation:
Applied Nano Tech & Science lab, KAIST, Daejeon, Korea
Costas. P. Grigoropoulos
Affiliation:
Applied Nano Tech & Science lab, KAIST, Daejeon, Korea
Get access

Abstract

All-printed electronics is the key technology to ultra-low-cost, large-area electronics. As a critical step in this direction, we demonstrate that femtosecond laser processing (sintering and ablation) of solution deposited metal nanoparticles enables direct metal patterning at low-temperature with ultra high resolution (∼300nm) to overcome the resolution limitation of the current inkjet direct writing processes.

This could be explained by the combined effects of novel properties of metal nanoparticles such as melting temperature drop, strong absorption of the incident laser beam at surface plasmon mode, lower conductive heat transfer loss, and the relatively weak bonding between nanoparticles. Local thermal control of the laser sintering process could minimize the heat-affected zone and the thermal damage to the substrate and further enhance the resolution of the process. This local nanoparticle deposition and energy coupling enable an environmentally friendly and cost-effective process as well as a low-temperature manufacturing sequence to realize large-area, flexible electronics on polymer substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zschieschang, U., Klauk, H., Halik, M., Schmid, G., and Dehm, C., (2003) Adv. Mater. 15 1147-51.Google Scholar
2. Redinger, D., Molesa, S., Yin, S., Farschi, R., and Subramanian, V., (2004) IEEE trans. on electron devices 51 1978-83.Google Scholar
3. Loo, Y.L., Someya, T., Baldwin, K.W., Bao, Z., Ho, P., Dodabalapur, A., Katz, H.E., and Rogers, J.A., (2002) Proc. Natl. Acad. Sci. 99 10252-6.Google Scholar
4. Zaumseil, J., Someya, T., Bao, Z., Loo, Y.L., Cirelli, R., and Rogers, J.A., (2003) Appl. Phys. Lett. 82 793-5.Google Scholar
5. Blanchet, G.B., Loo, Y.L., Rogers, J.A., Gao, F. and Fincher, C.R., (2003) Appl. Phys. Lett. 82 463-5Google Scholar
6. Stutzmann, N., Friend, R.H., and Sirringhaus, H., (2003) Science 299 1881-84.Google Scholar
7. Ganier, F., Hajlaoui, R., Yasser, A., and Srivastava, P., (1994) Science 265 1684-86.Google Scholar
8. Bao, Z., Feng, Y., Dodavalapur, A., Raju, V.R., and Lovinger, A.J., (1997) Chem. Mater. 9 1299-301.Google Scholar
9. Ridley, B.A., Nivi, B., and Jacobson, J.M., (1999) Science 286 746-9.Google Scholar
10. Ko, S., Pan, H., Luscomb, C., Frèchet, J.M.J., Grigoropoulos, C.P., and Poulikakos, D., (2007) Nanotechnology 18, 345202.Google Scholar
11. Ko, S., Pan, H., Luscomb, C., Frèchet, J.M.J., Grigoropoulos, C.P., and Poulikakos, D., (2007) Appl. Phys. Lett. 90 141103 (1-3).Google Scholar
12. Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T.S., and Sirringhaus, H., (2004) Nat. Mater 3 171-6.Google Scholar
13. Piqué, A., Chrisey, D.B., Fritz-Gerald, J.M., McGill, R.A., Auyeng, R.C.Y., Wu, H.D., Lakeou, S., Nguyen, V., Chung, R., and Duiganan, M., (2000) J. Mater.Res. 15 1872-1875.Google Scholar
14. Tan, B., Venkatakrishnan, K., and Tok, K.G., (2003) Appl. Surf. Sci. 207 365-71.Google Scholar
15. Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E.P., (2000) Science 290 2123-26.Google Scholar
16. Sirringhaus, H., and Shimoda, T., (2003) MRS bulletin 28 802-6.Google Scholar
17. Sele, C.W., Werne, T.V., Friend, R.H., and Sirringhaus, H., (2005) Adv. Mater. 8 9971001.Google Scholar
18. Perelaer, J., Klokkenburg, M., Hendriks, C.E., Schubert, U.S., (2006) Adv. Mater. 18 2101.Google Scholar