Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:45:16.163Z Has data issue: false hasContentIssue false

Two-way Shape Memory Surfaces

Published online by Cambridge University Press:  26 February 2011

Yijun Zhang
Affiliation:
[email protected], Michigan State University, Chemical Engineering and Materials Science, 865 Kinkead Way,Apt 104, Albany, CA, 94706, United States
Yang-Tse Cheng
Affiliation:
[email protected], General Motors Research and Development Center, Materials and Processes Laboratory, Warren, MI, 48090, United States
David S Grummon
Affiliation:
[email protected], Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing, MI, 48823, United States
Get access

Abstract

Recently, we discovered that a two-way shape memory effect can be realized on NiTi shape memory alloy surfaces by spherical indentation. Either thermomechanical cycling or slip-plastic deformation under contact loading conditions is effective in inducing reversible indent depth changes: deeper indents in the low temperature martensitic phase and shallower indents in the high temperature austenitic phase [1, 2]. By planarization of these spherical indents to restore a flat surface, circular reversible surface protrusions appear upon heating and disappear upon cooling. Nano-protrusions are also realized in sputter deposited NiTi thin films. Furthermore, two-way reversible line protrusions are made by planarizing scratch tracks on a NiTi shape memory alloy. Shape memory surfaces can be exploited for a wide range of potential applications, including information storage, optical devices, and smart tribological surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, Y. J., Cheng, Y. T., Grummon, D. S., Applied Physics Letters 88, 13 (2006).Google Scholar
2. Zhang, Y. J., Cheng, Y. T., Grummon, D. S., Applied Physics Letters 89, 4 (2006).Google Scholar
3. Otsuka, K., Wayman, C. M., “Shape memory materials” (Cambridge University Press, New York, 1998)Google Scholar
4. Nagasawa, A., Enami, K., Ishino, Y., Abe, Y., Nenno, S., Scripta Metallurgica 8, 1055 (1974).Google Scholar
5. Manach, P. Y., Favier, D., Scripta Metallurgica Et Materialia 28, 11, 1417 (1993).Google Scholar
6. Wang, Z., Zu, X., Feng, X., Dai, J., Materials Letters 54, 55 (2002).Google Scholar
7. Liu, Y., Liu, Y., Humbeeck, J. Van, Acta Materialia 47, 199 (1998).Google Scholar
8. Wang, J. J., Omori, T., Sutou, Y., Kainuma, R., Ishida, K., Scripta Materialia 52, 311 (2005).Google Scholar
9. Perkins, J., Sponholz, R. O., Metallurgical Transactions a-Physical Metallurgy and Materials Science 15, 313 (1984).Google Scholar
10. Stalmans, R., Vanhumbeeck, J., Delaey, L., Acta Metallurgica Et Materialia 40, 2921 (1992).Google Scholar
11. Stalmans, R., Vanhumbeeck, J., Delaey, L., Acta Metallurgica Et Materialia 40, 501 (1992).Google Scholar
12. Scherngell, H., Kneissl, A. C., Acta Materialia 50, 327 (2002).Google Scholar
13. Scherngell, H., Kneissl, A. C., Scripta Materialia 39, 205 (1998).Google Scholar
14. Nix, W. D., Gao, H. J., Journal of the Mechanics and Physics of Solids 46, 411 (1998).Google Scholar
15. Swadener, J. G., George, E. P., Pharr, G. M., Journal of the Mechanics and Physics of Solids 50, 681 (2002).Google Scholar