Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:27:40.229Z Has data issue: false hasContentIssue false

Two-Layer LPE Hgcdte P-on-n 8-18μm Photodiodes

Published online by Cambridge University Press:  25 February 2011

E. E. Krueger
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
G. N. Pultz
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
P. W. Norton
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
J. A. Mroczkowski
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
M. H. Weiler
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
M. B. Reine
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
Get access

Abstract

This paper reports recent results on two-layer P-on-n LPE HgCdTe heterojunction photodiodes with cutoff wavelengths beyond 19μm. These results demonstrate the potential of photovoltaic HgCdTe detectors to satisfy the detector requirements of advanced NASA satellite instruments out to wavelengths of 17μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chahine, M. T., “Sensor Requirements for Earth and Planetary Observations,”; Proc. of the Innovative Long Wavelength Infrared Detector Workshop, April 24-26, 1990 (NASA Jet Propulsion Laboratory Publication 90-22, July, 1990).Google Scholar
2. Broudy, R. M. and Mazurczyk, V. J., “(Hg,Cd)Te Photoconductive Detectors,”; Chapter 5 in Semiconductors and Semimetals, Volume 18, Ed. by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1981).Google Scholar
3. Reine, M. B., Sood, A. K. and Tredwell, T. J., “Photovoltaic Infrared Detectors,”; Chapter 6 in Semiconductors and Semimetals, Volume 18, Ed. by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1981).Google Scholar
4. Pultz, G. N., Norton, P. W., Krueger, E. E. and Reine, M. B., 1990 MCT Workshop, to be published in J. Vac. Sci. Technol., 1991.Google Scholar
5. Doyle, O. L., Mroczkowski, J. A. and Shanley, J. F., J. Vac. Sci. Technol. A3, 259 (1985).Google Scholar
6. Grimbergen, M. and Szilagyi, A., Mat. Res. Soc. Symp. Proc. 69, 257 (1986).Google Scholar
7. Vydyanath, H. R. and Hiner, C. H., J. Appl. Phys. 65, 3080 (1989).Google Scholar
8. Briggs, R. J., Marciniec, J. W., Zimmermann, P. H. and Sood, A. K., IEEE International Electron Devices Meeting Technical Digest, p. 496 (1980).Google Scholar
9. Chung, H. K., Rosenberg, M. A. and Zimmermann, P. H., J. Vac. Sci. Technol. A3, 189 (1985).Google Scholar
10. Higgins, W. M., Pultz, G. N., Roy, R. G., Lancaster, R. A. and Schmit, J. L., J. Vac. Sci. Technol. A7, 271 (1989).Google Scholar
11. Nelson, D. A., Loral Infrared & Imaging Systems, unpublished work, 1981.Google Scholar
12. Kinch, M. A., Brau, M. J. and Simmons, A., J. Appl. Phys. 44, 1649 (1973).Google Scholar
13. Capper, P., “Carrier Lifetimes in n-Type CdHgTe,”; Chapter 5.7 in Properties of Mercury Cadmium Telluride, edited by Brice, J. and Capper, P. (INSPEC, IEE, London, 1987).Google Scholar
14. Blakemore, J. S., Semiconductor Statistics (Dover, New York, 1987), Equations 620.1 and 620.2.Google Scholar