Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:32:16.407Z Has data issue: false hasContentIssue false

Two-Component Grafted Polymer Layers

Published online by Cambridge University Press:  21 February 2011

T. A. Witten
Affiliation:
James Franck Institute, University of Chicago, Chicago IL 60637
S. T. Milner
Affiliation:
Exxon Research and Engineering Co., Annandale NJ 08801
Get access

Abstract

We report a theoretical study of the equilibrium statistical mechanics of polymer chains end-grafted in the dense liquid state to a surface. We consider the special features which arise when two immiscible polymer species are present. In constrast to ungrafted polymer blends, this system has two distinct scaling regimes of strong immiscibility: endsegregated and fully segregated. We discuss the mixing energy and bistability properties in each regime using approximations valid for large chain elongation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Degennes, P. G., Advances in Colloid and Interface Science 27 189 (1987).Google Scholar
2. Culbertson, Bill M., ed. Multiphase Macromolecular Systems (Plenum, New York 1989).Google Scholar
3. Klein, J. Physics World 2 35 (1989).Google Scholar
4. Alexander, S., J. Phys. (Paris) 38, 983 (1977).Google Scholar
5. de Gennes, P.-G., J. Phys. (Paris) 37, 1443 (1976); Macromolecules 13, 1069 (1980); C. R. Acad. Sci. (Paris) 300, 839 (1985).Google Scholar
6. Taunton, H. J., Toprakcioglu, C., Fetters, L. J., and Klein, J., Nature, 332 712 (1988); H. J. Taunton, C. Toprakcioglu, and J. Klein, Macromolecules, 21 3336 (1988).Google Scholar
7. Hadziioannou, G., Patel, S., Granick, S. and Tirrell, M., J. Amer. Chem. Soc. 108 2869 (1986), and references therein.Google Scholar
8. Meier, D. J., J. Polym. Sci, Part C 26 81 (1969); D. J. Meier, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem. 11 400 (1970).Google Scholar
9. Hashimoto, T., Shibayama, M., Kawai, H., Macromolecules 13 1237 (1980); T. Hashimoto, M. Shibayama, H. Kawai, Macromolecules 16 1093 (1983); T. Hashimoto, M. Fujimura, H. Kawai; Macromolecules 13 1660 (1980).Google Scholar
10. Thomas, E. L., Alward, D. B., Kinning, D. J., Martin, D. C., L.Handlin, D. Jr, Fetters, L. J.; Macromolecules 19 2197 (1986).Google Scholar
11. Witten, T. A., Leibler, L., and Pincus, P. A., Macromolecules in press.Google Scholar
12. Scheutjens, J. M. H. M., Fleer, G. J., J. Phys. Chem. 83 1619 (1979).Google Scholar
13. Ben-Shaul, A., Szleifer, I., Gelbart, W. M.,, in Physics of Amphiphilic Layers, ed. Meunier, J. et al. (Springer-Verlag, New York 1987), p. 2 Google Scholar
14. Ben-Shaul, A., Szleifer, I. and Gelbart, W. M., J. Chem. Phys. 83, 3597 (1985).Google Scholar
15. Semenov, A. N.,; Sov. Phys. JETP 61 733 (1985) [Zh. Eksp. Teor. Fiz. 88 1242 (1985)].Google Scholar
16. Milner, S. T., Witten, T. A., Cates, M. E.; Europhys. Lett. 5 413 (1988); S. T. Milner, T. A. Witten, M. E. Cates; Macromolecules 21 2610 (1988).Google Scholar
17. Muthukumar, M. and Ho, J. S. Macromolecules 22 965 (1989); M. Murat and G. S. Grest, Macromolecules 22 4054 (1989); A. Chakrabarti and R. Toral, Lehigh University preprint.Google Scholar
18. Milner, S. T., Ball, R. C., Witten, T. A., and Marko, J., to be publishedGoogle Scholar
19. Milner, S. T., Witten, T. A., and Cates, M. E., Macromolecules 22 853 (1989).Google Scholar
20. Milner, S. T., Europhys. Lett. 7, 695 (1988).Google Scholar
21. Witten, T. A., Milner, S. T., and Wang, Z-G, Multiphase Macromolecular Systems Culbertson, Bill M., ed. (Plenum, New York 1989).Google Scholar
22. Roe, R.-J. Macromolecules 19 728 (1986).Google Scholar
23. Bates, F. S., Muthukumar, M., Wignall, G. D., and Fetters, L. J., J. Chem. Phys. 89 535 (1988).Google Scholar
24. Schweizer, K. S. and Curro, J. G., Phys. Rev. Letts. 60 809 (1988).Google Scholar
25. In general one might expect the interaction parameter A to depend on the local state of chain elongation. However, since the local distortion induced by the elongation of our chains is arbitrarily weak, the elongation being arbitrarily smaller than full extension, we expect such effects to be unimportant. Thus it should be safe to simply add the two contributions to the local effective pressure.Google Scholar
26. Polyisobutylene has this property.Google Scholar