Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:25:21.275Z Has data issue: false hasContentIssue false

Tunable Dielectric Thin Films for HTS Microwave Applications

Published online by Cambridge University Press:  10 February 2011

B. H. Moeckly
Affiliation:
Conductus, Inc., 969 W. Maude Ave., Sunnyvale, CA 94086, [email protected]
Y. M. Zhang
Affiliation:
Conductus, Inc., 969 W. Maude Ave., Sunnyvale, CA 94086, [email protected]
Get access

Abstract

SrTiO3 (STO) thin films are promising for a variety of applications requiring tunability. We describe the growth and characterization of STO thin films including their dielectric properties. We also present attempts at reducing the loss tangent of these films, and we discuss their integration with high-temperature superconductor (HTS) microwave filters for trimming purposes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gevorgian, S. S., Martinsson, T., Linnér, P. L. J., and Kollberg, E. L., IEEE Trans. Microwave Theory and Techniques 44, 896 (1996).10.1109/22.506449Google Scholar
2. Dalberth, M. J., Stauber, R. E., Price, J. C., Rogers, C. T., and Galt, D., Appl. Phys. Lett. 72, 507 (1998).10.1063/1.120799Google Scholar
3. Lippmaa, M., Nakagawa, N., Kawasaki, M., Ohashi, S., Inaguma, Y., Itoh, M., and Koinuma, H., Appl. Phys. Lett. 74, 3543 (1999).10.1063/1.124155Google Scholar
4. Galt, D., Price, J., Beall, J. A., and Ono, R. H., Appl. Phys. Lett. 63, 3078 (1993).10.1063/1.110238Google Scholar
5. Li, H.-C., Si, W., West, A. D., and Xi, X. X., Appl. Phys. Lett. 73, 464 (1998).10.1063/1.121901Google Scholar
6. Cowley, R. A., Phys. Rev. 134, A981 (1964).10.1103/PhysRev.134.A981Google Scholar
7. Worlock, J. M. and Fleury, P. A., Phys. Rev. Lett. 19, 1176 (1967).10.1103/PhysRevLett.19.1176Google Scholar
8. Vendik, O. G., J. Appl. Phys. 82, 4475 (1997).10.1063/1.366180Google Scholar
9. Viana, R., Lunkenheimer, P., Hemberger, J., Böhmer, R., and Loidl, A., Phys. Rev. B 50, 601 (1994).10.1103/PhysRevB.50.601Google Scholar
10. Dalberth, M., Ph.D. thesis, University of Colorado (1999).Google Scholar
11. Treece, R. E., Thompson, J. B., Mueller, C. H., Rivkin, T., and Cromar, M. W., IEEE Trans. Appl. Supercon. 7, 2363 (1997).10.1109/77.621714Google Scholar
12. Jia, Q. X., Filndikoglu, A. T., Reagor, D., and Lu, P., Appl. Phys. Lett. 73, 897 (1998).10.1063/1.122031Google Scholar
13. Smith, D., Newman, N., and Moeckly, B. H., unpublished.Google Scholar
14. Chang, H., Takeuchi, I., and Xiang, X.-D., Appl. Phys. Lett. 74, 1165 (1999).10.1063/1.123475Google Scholar
15. Findikoglu, A. T., Jia, Q. X., Campbell, I. H., Wu, X. D., Reagor, D., Mombourquette, C. B., and McMurry, D., Appl. Phys. Lett. 66, 3674 (1995).10.1063/1.114137Google Scholar
16. Rupprecht, G. and Bell, R. O., Phys. Rev. 125, 1915 (1962).10.1103/PhysRev.125.1915Google Scholar