Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T19:50:42.489Z Has data issue: false hasContentIssue false

Transuranium Element Incorporation into the β-U3O8 Uranyl Sheet

Published online by Cambridge University Press:  03 September 2012

M. L. Miller
Affiliation:
Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, [email protected]
P. C. Burns
Affiliation:
Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, [email protected]
R. J. Finch
Affiliation:
Department of Geology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
R. C. Ewing
Affiliation:
Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, [email protected]
Get access

Abstract

Spent nuclear fuel (SNF) is unstable under oxidizing conditions. Although recent studies have determined the paragenetic sequence for uranium phases that result from the corrosion of SNF, there are only limited data on the potential of alteration phases for the incorporation of transuranium elements. The crystal chemical characteristics of transuranic elements (TUE) are to a certain extent similar to uranium; thus TUE incorporation into the sheets of uranyl oxide hydrate structures can be assessed by examination of the structural details of the β-U3O8 sheet type.

The sheets of uranyl polyhedra observed in the crystal structure of β-U3O8 also occur in the mineral billietite (Ba[(UO2)3O2(OH)3]2(H2O)4), where they alternate with α-U3O8 type sheets. Preliminary crystal structure determinations for the minerals ianthinite, ([U24+(HO2)4O6(HO)4(H2O)4](H2O)5), and “wyartite II” (mineral name not approved by IMA committee on mineral names), {CaCo3}[U4+(UO2)2O3(OH)2](H2O)4, indicate that these phases also contain β-U3O8 type sheets. The β-U3O8sheet anion topology contains triangular, rhombic, and pentagonal sites in the proportions 2: 1:2. In all structures containing β-U3O8 type sheets, the triangular sites are vacant. The pentagonal sites are filled with U6+O2 forming pentagonal bipyramids. The rhombic dipyramids filling the rhombic sites contain U6+O2 in billietite, U4+O2 in β-U3O8U4+(H2O)2 in ianthinite, and U4+O3 in “wyartite-II” (in which one apical anion is replaced by two O atoms forming a shared edge with a carbonate triangle of the interlayer). Interlayer species include: H2O (billietite, “wyartite II”, and ianthinite), Ba2+ (billietite) Ca2+ (”wyartite II”), and CO3−2 (”wyartite II”); there is no interlayer in β-U3O8. The similarity of known TUE coordination polyhedra with those of U suggests that the β-U3O8 sheet will accommodate TUE substitution coupled with variations in apical anion configuration and interlayer population providing the required charge balance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Murphy, W.M. and Pabalan, R.T., Center forNucl. Waste Reg. Anal. Rept. 95–014, 21 p. (1995).Google Scholar
[2] Johnson, L.H. and Werme, L.O., Mater, Res. Soc. Bull. XIX (12) p. 24 (1994).10.1557/S088376940004865XGoogle Scholar
[3] Forsyth, R.S. and Werme, L.O., J. Nucl. Mater. 190 p. 3 (1992).10.1016/0022-3115(92)90071-RGoogle Scholar
[4] Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. and Tani, B.S., J. Nucl. Matr. 190 p. 107 (1992).10.1016/0022-3115(92)90081-UGoogle Scholar
[5] Stroes-Gascoyne, S., Johnson, L.J., Beeley, P.A., and Sellinger, D.M., In: Scientific Basis for Nuclear Waste Management IX, edited by Werme, L.O. (Mater. Res. Soc. Proc. 50, Pittsburgh, PA 1985), p. 317.Google Scholar
[6] Wang, R. and Katayama, J.B., Nucl. Chem. Waste Management 3 p. 83 (1982).10.1016/0191-815X(82)90054-7Google Scholar
[7] Finch, R.J. and Ewing, R.C., In: Scientific Basis for Nuclear Waste Management XII, edited by Barkatt, A. and von Konynenburg, R.A (Mater. Res. Soc. Proc. 353, Pittsburgh, PA 1993), p. 633.Google Scholar
[8] Burns, P.C., Ewing, R.C., and Miller, M.L., J. Nucl. Mater, (in press).Google Scholar
[9] Miller, M.L. and Ewing, R.C., (in prep)Google Scholar
[10] Miller, M.L., Finch, R.J., Burns, P.C., and Ewing, R.C., J. Mater. Res., 11, p. 3048.10.1557/JMR.1996.0387Google Scholar
[11] Burns, P.C., Miller, M.L., and Ewing, R.C., Can. Min., 34, p. 845 (1996).Google Scholar
[12] Burns, P.C., Finch, R.J., Hawthorne, F.C., Miller, M.L., and Ewing, R.C., In: Scientific Basis for Nuclear Waste Management XX, edited by Gray, W.J. and Triay, I.R. (Mater. Res. Soc. Proc., this volume, 1996).Google Scholar
[13] Finch, R.J., Cooper, M.A., Hawthorne, F.C., and Ewing, R.C., Can. Mineral. 34 (1996), (in press).Google Scholar
[14] Pagoaga, M.K., Appleman, D.E., and Stewart, J.M., Am. Mineral. 72, p. 1230 (1987).Google Scholar
[15] Rosenzweib, A. and Ryan, R.R., Cryst. Struct. Commun. 6, p. 617 (1977).Google Scholar
[16] Loopstra, B.O., Acta. Crystallogr. B26, p. 656 (1970).Google Scholar
[17] Dickens, P.G., Stuttard, G.P., and Patat, S., J. Mater. Chem. 3, p. 339 (1993).10.1039/jm9930300339Google Scholar
[18] Gasperin, M., J. Solid State Chem. 67, p. 219 (1987).10.1016/0022-4596(87)90357-4Google Scholar
[19] Meunier, G. and Galy, J., Acta Crystallog. B29, p. 1251 (1973).10.1107/S0567740873004334Google Scholar
[20] Saine, M.C., J. Less-Common Metals 154, p. 361 (1989).10.1016/0022-5088(89)90220-8Google Scholar
[21] Ijdo, D.J.W., Acta Crystallogr. C49, p. 654 (1993).Google Scholar
[22] Cordfunke, E.H.P., Van Vlaandersen, P., Onink, M., and Ijdo, D.J.W., J. Solid State Chem. 94, p. 12 (1991).10.1016/0022-4596(91)90215-4Google Scholar
[23] Birch, W.D., Mumme, W.G., and Segnit, E.R., Aust. Mineral. 3, p. 125 (1988).Google Scholar
[24] Gorbunova, Yu.E., Linde, S.A., Lavrov, A.V., and Pobedina, A.B., Dokl. Akad. Nauk SSSR 251, p. 385 (1980).Google Scholar