Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T01:24:25.742Z Has data issue: false hasContentIssue false

Transient Cooling of Ultrathin Epitaxial Bi(111)-Films on Si(111) Upon Femtosecond Laser Excitation Studied by Ultrafast Reflection High Energy Electron Diffraction

Published online by Cambridge University Press:  31 January 2011

Anja Hanisch-Blicharski
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Boris Krenzer
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Simone Möllenbeck
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Manuel Ligges
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Ping Zhou
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Martin Kammler
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Michael Horn-von Hoegen
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Get access

Abstract

With time resolved ultrafast electron diffraction the cooling process across the interface between a thin film and the underlying substrate was studied after excitation with short laser pulses. From the exponential decay of the surface temperature evolution a thermal boundary conductance of 1430 W/(cm2K) is determined for a 9.7 nm thin Bi(111) film on Si(111). A linear dependence between laser fluence and initial temperature rise was measured for film-thicknesses between 2.5 nm and 34.5 nm. The ratio of initial temperature rise and laser fluence for different film-thicknesses is compared to a model taking multilayer optics into account. The data agree well with this model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cahill, D. G. Ford, W. K. Goodson, K. E. Mahan, G. D. Majumdar, A. Maris, H. J. Merlin, R. and Phillpot, S. R. J. Appl. Phys., 93, 793 (2003).Google Scholar
2 Swartz, E. T. and Pohl, R. O. Rev. Mod. Phys., 61, 605 (1989).Google Scholar
3 Stoner, R. J. and Maris, H. J. Phys. Rev. B, 48, 16373 (1993).Google Scholar
4 Krenzer, B. Hanisch, A. Duvenbeck, A. Rethfeld, B. and Hoegen, M. Horn- von, J. Nanomaterials, ID 590609 (2008).Google Scholar
5 Young, D. A. and Marris, H. J. Phys. Rev. B, 40, 3685 (1989).Google Scholar
6 Phelan, P. E. J. Heat Transfer, 120, 37 (1998).Google Scholar
7 Krenzer, B. Janzen, A. Zhou, P. Linde, D. von der and Hoegen, M. Horn-von, New J. Phys., 8, 190 (2006).Google Scholar
8 Miklowitz, J. Applied Mathematics and Mechanics, Vol. 22, (North Holland, Amsterdam, 1978).Google Scholar
9 Kury, P. Hild, R. Thien, D. Günter, H.-L., Heringdorf, F.-J. Meyer zu and Hoegen, M. Horn- von, Rev. Sci. Instrum., 76, 083906 (2005).Google Scholar
10 Yaginuma, S. Nagao, T. Sadowski, J. T. Pucci, A. Fujikawa, Y. and Sakurai, T. Surf. Sci. Lett., 547, L877 (2003).Google Scholar
11 Nagao, T. Sadowski, J. T. Saito, M. Yaginuma, S. Fujikawa, Y. Kogure, T. Ohno, T. Hasegawa, Y., Hasegawa, S. and Sakurai, T. Phys. Rev. Lett. 93, 105501 (2004).Google Scholar
12 Jnawali, G. Hattab, H. Krenzer, B. and Hoegen, M. Horn- von, Phys. Rev. B, 74, 195340 (2006).Google Scholar
13 Janzen, A. Krenzer, B. Zhou, P. Linde, D. von der and Hoegen, M. Horn-von, Surf. Sci., 600, 4094 (2006).Google Scholar
14 Hanisch, A. Krenzer, B. Pelka, T. Möllenbeck, S. and Hoegen, M. Horn- von, Phys, Rev. B, 77, 125410 (2008).Google Scholar
15 Murphy, E. A. H. E. Elsayed-Ali and Herman, J. W. Phys. Rev. B, 48, 4921 (1993).Google Scholar
16 Janzen, A. Krenzer, B. Heinz, O. Zhou, P. Thien, D. Hanisch, A. Heringdorf, F.-J. Meyer zu, Linde, D. von der and Hoegen, M. Horn- von, Rev. Sci. Instrum., 78, 013906 (2007).Google Scholar
17 Sun, C.-K., Vallée, F., Acioli, L. Ippen, E. P. and Fujimoto, J. G. Phys. Rev. B, 48, 12365 (1993).Google Scholar
18 Landolt-Börnstein, , Condensed Matter, New Series, Group III, Vol. 15, Pt. C (Springer, New York, 2005).Google Scholar
19 Aspnes, D. E. and Studna, A. A. Phys. Rev. B, 27, 985 (1983).Google Scholar
20 Renucci, J. B. Richter, W. Cardona, M. and Schönherr, E., Phys. Status Solidi B, 60, 299 (1973).Google Scholar
21 Abelès, F., Optics of Thin Films, Advanced Optical Techniques (North Holland, Amsterdam, 1967).Google Scholar
22 Cordona, M. and Greenaway, D. L. Phys. Rev. B, 133, A1685 (1964).Google Scholar