Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T12:27:30.050Z Has data issue: false hasContentIssue false

Tracer-Diffusion in Weakly-Ordered Block Copolymers

Published online by Cambridge University Press:  21 February 2011

Glenn H. Fredrickson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Scott T. Milner
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974 Exxon Research and Engineering Company, Annandale, NJ 08801
Get access

Abstract

We have investigated the self and tracer-diffusion properties of a labeled diblock copolymer in a weakly-ordered lamellar phase. This phase can be a pure copolymer of equal or different molecular weight, or might contain added homopolymer. The spatially-periodic chemical potential field presented by the lamellar phase is capable of strongly influencing the diffusive motion of the tracer. In general, this field serves to slow diffusion, although the manner in which it acts depends on the wavelength of the potential relative to the labeled copolymer radius-of-gyration and on the composition of the copolymer. In the extreme limit of compositional asymmetry of the diblock tracer, we obtain results for the tracer-diffusion coefficient of a homopolymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Developments in Block Copolymers – Vols. 1 & 2, edited by Goodman, I. (Applied Science, New York, 1982).Google Scholar
2. Thomas, E. L., Alward, D. B., Kinning, D. J., Martin, D. C., Handlin, D. L., Fetters, L. J., Macromolecules 19, 2197 (1986).Google Scholar
3. Leibler, L., Macromolecules 13, 1602 (1980).Google Scholar
4. Bates, F. S., Rosedale, J. H., Fredrickson, G. H., and Glinka, C. J., Phys. Rev. Lett. 61, 2229 (1988).Google Scholar
5. Brazovskii, S. A., Soy. Phys. JETP 41, 85 (1975).Google Scholar
6. Fredrickson, G. H. and Helfand, E., J. Chem. Phys. 87, 697 (1987).Google Scholar
7. Bates, F. S., Rosedale, J. H., and Fredrickson, G. H., J. Chem. Phys., in press.Google Scholar
8. Rosedale, J. H. and Bates, F. S., Macromolecules, in press.Google Scholar
9. Bates, F. S., Macromolecules 17, 2607 (1984).Google Scholar
10. Fredrickson, G. H. and Helfand, E., J. Chem. Phys. 89, 5890 (1988); R. G. Larson and G. H. Fredrickson, Macromolecules 20, 1897 (1987); G. H. Fredrickson and R. G. Larson, J. Chem. Phys. 86, 1553 (1987).Google Scholar
11. Kawasaki, K. and Sekimoto, K., Macromolecules 22, 3063 (1989).Google Scholar
12. Broseta, D. and Fredrickson, G. H., J. Chem. Phys., submitted.Google Scholar
13. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Oxford, New York, 1986).Google Scholar
14. See, for example: Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications (Springer-Verlag, 1989).Google Scholar
15. The applicability of electrostatic methods to problems in block copolymers was previously noted by Semenov, A. N., Soy. Phys. JETP 61, 733 (1985), and by T. Ohta and K. Kawasaki, Macromolecules 19, 2621 (1986).Google Scholar
16. Milner, S. T. and Fredrickson, G. H., manuscript in preparation.Google Scholar