Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T05:23:48.906Z Has data issue: false hasContentIssue false

Towards Terabit/in2 Magnetic Storage Media

Published online by Cambridge University Press:  01 February 2011

Dimitris Niarchos
Affiliation:
[email protected], Inst. of Materials Science, NCSR Demokritos, Patriachou Gregoriou & Neapoleos, Athens, 15310, Greece
E. Manios
Affiliation:
[email protected], NCSR Demokritos, Inst. of Materials Science, Patriarchou Gregoriou & Neapoleos, Ag. Paraskevi, Athens, 15310, Greece
I. Panagiotopoulos
Affiliation:
[email protected], University of Ioannina, Department of Materials Science and Engineering, Ioannina 45110, Ioannina, 45110, Greece
Get access

Abstract

In modern society there is an almost insatiable demand for ever increasing storage capacities in computers and consumer electronics. Magnetic recording is the dominant storage technology and the hard disk, due to its versatility, is becoming a pervasive device in various applications. The soaring demand arises from data-intensive computer applications, including graphics, animation, multimedia and desktop publishing, to which can be added a growing market for non-PC consumer devices such as set-top boxes, cameras, mobile phones, laser printers and satellite navigation systems. In response to this demand the hard disk drive manufacturers have come forward with spectacular increase in storage capacities and densities over the last decade. It is currently projected that the evolution of conventional perpendicular recording storage density in the hard disk industry will reach a limit of 500 Gbit/in2, while further progress will require major breakthroughs and alternative technologies. In this presentation we will review the state-of-the-art in magnetic recording media and we will discuss the future approaches to reach densities in excess of 1 Tbit/in2 densities along the three axes : a) self-assembled coercive nanoparticles, b) exchange spring media and percolated media, and c) bit-patterned media (nanoscale patterning). This entails resolving several conflicting requirements with regard to signal to noise ratio (SNR) , writability and thermal stability of these new promising systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weller, D., Moser, A., Folks, L., Best, M.E., Lee, W., Toney, M.F., Schwickert, M., Thiele, J.-U. and Doerner, M.F., IEEE Trans. Magn. 36, 10 (2000).Google Scholar
2 Richter, H.J. and Dobin, A.Y., J. Magn. Magn. Mater. 287, 41 (2005).Google Scholar
3 Weller, D. and Moser, A., IEEE Trans. Magn. 35, 4423 (1999).Google Scholar
4 Stoner, E.C. and Wohlfarth, E.P., Phil. Trans. Roy. Soc. A-240, 599 (1948) ibid. A-52, 562 (1949).Google Scholar
5 Victora, R.H., Phys. Rev. Lett. 63, 457 (1989).Google Scholar
6 Pfeiffer, H., Phys. Stat. Sol. (a) 118, 295 (1990).Google Scholar
7 Lu, P.-L. and Charap, S.H., IEEE Trans. Magn. 30, 4230 (1994).Google Scholar
8 Coffey, K.R., Parker, M.A. and Howard, J.K., IEEE Trans. Magn. 31, 2737 (1995).Google Scholar
9 Yanagisawa, M., Shiota, N., Yamaguchi, H. and Suganuma, Y., IEEE Trans. Magn. 19, 1638 (1983).Google Scholar
10 Wang, J.-P., Qiu, J.-M., Taton, T.A. and Kim, B.-S., IEEE Trans. Magn. 42, 3042 (2006).10.1109/TMAG.2006.880150Google Scholar
11 Jones, B.A., Dutson, J.D., OGrady, K., Hickey, B.J., Li, D., Poudyal, N. and Liu, J.P., IEEE Trans. Magn. 42, 3066 (2006).Google Scholar
12 Sun, A.-C., Hsu, J.-H., Kuo, P.C. and Huang, H.L., IEEE Trans. Magn. 43, 2130 (2007).10.1109/TMAG.2007.892999Google Scholar
13 Plumer, M.L., Ek, J. van and Weller, D. (Eds.) “The Physics of Ultra-High-Density Magnetic Recording” (Springer-Springer Series in Surface Sciences, 2001).Google Scholar
14 Margulies, D.T., Supper, N., Do, H., Schabes, M. E., Berger, A., Moser, A., Rice, P.M., Arnett, P., Madison, M., Lengsfield, B., Rosen, H., Tang, K., Polcyn, A. and Fullerton, E.E., J. Appl. Phys. 97, 10N109 (2005).Google Scholar
15 Fullerton, E.E., Margulies, D.T., Schabes, M.E., Carey, M., Gurney, B., Moser, A., Best, M., Zeltzer, G., Rubin, K., Rosen, H. and Doerner, M., Appl. Phys. Lett. 77, 3806 (2000).Google Scholar
16 Acharya, B.R., Ajan, A., Abarra, E.N., Inomata, A. and Okamoto, I., Appl. Phys. Lett. 80, 85 (2002).Google Scholar
17 Shan, Z.S., Malhotra, S.S., Stafford, D.C., Bertero, G. and Wachenschwanz, D., Appl. Phys. Lett. 81, 2412 (2002).Google Scholar
18 Margulies, D.T., Berger, A., Moser, A., Schabes, M.E. and Fullerton, E.E., Appl. Phys. Lett. 82, 3701 (2003).Google Scholar
19 Pang, S.I., Piramanayagam, S.N. and Wang, J.P., J. Appl. Phys. 91, 8620 (2002).Google Scholar
20 Moser, A., Supper, N.F., Berger, A., Margulies, D.T. and Fullerton, E.E., Appl. Phys. Lett. 86, 262501 (2005).Google Scholar
21 Wang, J.P., Nature Materials 4, 191 (2005).Google Scholar
22 Zou, Y.Y. et al., IEEE Trans. Magn. 39, 1930 (2003).Google Scholar
23 Thiele, J.-U., Maat, S., Fullerton, E.E., Appl. Phys. Lett. 82, 2859 (2005).Google Scholar
24 Alex, M. et al., IEEE Trans. Magn. 37, 1244 (2001).Google Scholar
25 Suess, D., J. Magn. Magn. Mater. 308, 183 (2007).Google Scholar
26 Supper, N.F., Margulies, D.T., Moser, A., Berger, A., Do, H. and Fullerton, E.E., J. Appl. Phys. 99, 08S310 (2006).Google Scholar
27 Suess, D., Appl. Phys. Lett. 89, 113105 (2006).10.1063/1.2347894Google Scholar
28 Suess, D., Schref, T., Fähler, S., Kirschner, M., Hrkac, G., Dorfbauer, F. and Fidler, J., J. Magn. Magn. Mater. 290291, 551 (2005).Google Scholar
29 Wang, J.-P., Shen, W.K., Bai, J.M., Victora, R.H., Judy, J.H. and Song, W.L., Appl. Phys. Lett. 86, 142504 (2005).Google Scholar
30 Suess, D., Fidler, J., Porath, K., Schrefl, T. and Weller, D., J. Appl. Phys. 99, 08G905 (2006).Google Scholar
31 Terris, B.D. et al., J. Phys. D-Appl. Phys. 38, R199 (2005).Google Scholar
32 Albrecht, M. et al., Nature Materials 4, 203 (2005).Google Scholar
33 Itoh K, K. et al., Intermag/3M Conference, Baltimore, USA, DB-01 (2007).Google Scholar
34 Oshima, H. et al., Intermag/3M Conference, Baltimore, USA, DB-02 (2007).Google Scholar
35 Chen, M. et al., J. Amer. Chem. Soc. 128, 7132 (2006).Google Scholar
36 Sun, S., Adv. Mater. 18, 393 (2006).Google Scholar
37 Kockrick, E. et al., Adv. Mater. DOI: 10.1002/adma.20060137 (2007).Google Scholar
38 Queitsch, U. et al., Appl. Phys. Lett. 90, 113114 (2007).Google Scholar
39 Hamann, H.F. et al., Nanoletters 3, 1643 (2003).Google Scholar
40 Darling, S.B. et al., Adv. Mater. 17, 2446 (2005).10.1002/adma.200500960Google Scholar
41 Sui, Y.C. et al., J. Appl. Phys. 97, 10J304 (2005).Google Scholar
42 Yasui, N. et al., Appl. Phys. Lett. 83, 3347 (2003).Google Scholar