Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T04:11:54.626Z Has data issue: false hasContentIssue false

Towards Ferroelectric Field Effect Transistors in 4H-Silicon Carbide

Published online by Cambridge University Press:  11 February 2011

S.-M. Koo
Affiliation:
Department of Microelectronics and Information Technology, KTH, Royal Institute of Technology, S-164 40 Stockholm-Kista, SWEDEN
S. I. Khartsev
Affiliation:
Department of Microelectronics and Information Technology, KTH, Royal Institute of Technology, S-164 40 Stockholm-Kista, SWEDEN
C.-M. Zetterling
Affiliation:
Department of Microelectronics and Information Technology, KTH, Royal Institute of Technology, S-164 40 Stockholm-Kista, SWEDEN
A. M. Grishin
Affiliation:
Department of Microelectronics and Information Technology, KTH, Royal Institute of Technology, S-164 40 Stockholm-Kista, SWEDEN
M. Östling
Affiliation:
Department of Microelectronics and Information Technology, KTH, Royal Institute of Technology, S-164 40 Stockholm-Kista, SWEDEN
Get access

Abstract

We report on the integration of ferroelectric Pb(Zr,Ti)O3 (PZT) thin films on 4H-silicon carbide and their electrical properties. The structures of metal-ferroelectric-(insulator)-semiconductor MF(I)S and metal-ferroelectric-metal-insulator-semiconductor MFMIS have been fabricated and characterized. The MFMIS structures of Au/PZT/Pt/Ti/SiO2/SiC have shown fully saturated P-E hysteresis loops with remnant polarization Pr =14.2μC/cm2 and coercive field Ec = 58.9 kV/cm. The MFIS structures exhibited stable capacitance-voltage C-V loops with low conductance (<0.1 mS/cm2, tan d ∼ 0.0007 at 12 V, 400kHz) and memory window as wide as 10 V, when a 5 nm-thick Al2O3 was used as a high bandgap (Eg ∼ 9eV) barrier buffer layer between PZT (Eg ∼ 3.5eV) and SiC (Eg ∼ 3.2eV). Both structures on n- and p- SiC have shown electrical properties promising for the application to the gate stacks for the SiC field-effect transistors (FETs) and the design and process issues on different types of the metal-ferroelectric-silicon carbide field-effect transistors (FETs) have also been proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wu, S. Y., IEEE Trans. Electron Devices ED-21, 499 (1974).Google Scholar
2 Scott, J. F. and Araujo, C. A. P., Science 246, 1400 (1989).Google Scholar
3 Ishiwara, H., in Current status of fabrication and integration of ferroelectric gate FET's, Warrendale, PA, USA, 2000 (Mater. Res. Soc), p. 427.Google Scholar
4 Yu, J., Zhou, W., Xie, J., Zheng, Y., Dong, X., and Liu, G., in Fabrication of ferroelectric FET with metal/PZT/SiO2/Si structure, Warrendale, PA, USA, 1998 (Mater. Res. Soc), p. 199.Google Scholar
5 Tokumitsu, E., Fujii, G., and Ishiwara, H., Appl. Phys. Lett. 75, 575–7 (1999).Google Scholar
6 Li, T., Hsu, S. T., Ulrich, B. D., Stecker, L., Evans, D. R., and Lee, J. J., IEEE Electron Device Lett. 23, 339 (2002).Google Scholar
7 Chow, T. P., Materials Science Forum 338, 1155 (2000).Google Scholar
8 Cooper, J. A. Jr, Materials Science Forum 389–393, 15 (2002).Google Scholar
9 Mou, D., Petersson, C. S., Linnros, J., and Rao, K. V., Appl. Phys. Lett. 73, 1532(1998).Google Scholar
10 Ashikaga, K. and Ito, T., J. Appl. Phys. 85, 7471 (1999).Google Scholar
11 CREE Inc., NC, USA, http://www.cree.com. Google Scholar
12 Lin, Y., Zhao, B. R., Peng, H. B., Xu, B., Chen, H., Wu, F., Tao, H. J., Zhao, Z. X., and Chen, J. S., Appl. Phys. Lett. 73, 2781 (1998).Google Scholar
13 Koo, S.-M., Zheng, L.-R., and Rao, K. V., J. Mater. Res. 14, 3833 (1999).Google Scholar
14 Oh, S., Park, I. S., Kim, B. H., Lee, S. M., Yoo, C. Y., Lee, S. I., Koh, Y. B., and Lee, M. Y., Int. Ferroelectrics 20, 225 (1998).Google Scholar
15 Robertson, J., J. Vac. Sci. & Techn. B 18, 1785–91 (2000).Google Scholar
16 Chin, A., Yang, M. Y., Sun, C. L., and Chen, S. Y., IEEE Electron Device Lett. 22, 336 (2001).Google Scholar
17 Minami S, K. Y., IEEE Trans. Electron Devices 40, 2011 (1993).Google Scholar
18 Alexe, M., Appl. Phys. Lett. 72, 2283 (1998).Google Scholar
19 Seager, C. H., McIntyre, D. C., Warren, W. L., and Tuttle, B. A., Appl. Phys. Lett. 68, 2660 (1996).Google Scholar
20 Sze, C.-Y. and Lee, J. Y., J. Vac. Sci. Technol. B 18, 2848 (2000).Google Scholar
21 Afanas'ev, M. B. V. V., Pensl, G., Schulz, M. J., J. Appl. Phys. 79, 3108 (1996).Google Scholar
22 Zetterling, C.-M., Östling, M., Nordell, N., Schön, O., and Deschler, M., Appl. Phys. Lett. 70, 3549 (1997).Google Scholar
23 Tan, J., Das, M. K., Cooper, J. A. Jr, and Mellocha, M. R., Appl. Phys. Lett. 70, 2280 (1997).Google Scholar
24 Cooper, J. A. Jr, Physica Status Solidi A 162, 305–20 (1997).Google Scholar
25 Wang, X. W., Luo, Z. J., and Tso Ping, M., IEEE Trans. Electron Devices 47, 4583 (2000).Google Scholar