Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:38:05.086Z Has data issue: false hasContentIssue false

Towards Accurate Spectroscopic Identification of Species at Catalytic Surfaces: Anharmonic Vibrations of Formate on AuPt

Published online by Cambridge University Press:  18 December 2012

Matthew Chan
Affiliation:
Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON, L8S 4M1, Canada
Koichi Yamashita
Affiliation:
Department of Chemical System Engineering, School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Tucker Carrington
Affiliation:
Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston ON, K7L 3N6, Canada
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576, Singapore
Get access

Abstract

We present a calculation of vibrational frequencies of formate on the AuPt(111) surface alloy including full anharmonicity and coupling of all six intramolecular degrees of freedom. This species is a key intermediate in methanol oxidation on this material. We use a modified version of the method of Manzhos and Carrington to compute the spectrum directly from a small number (<10,000) of DFT single-point energies, bypassing the construction of a potential energy surface. This is the first such calculation for a 4-atomic species at a surface. The spectrum is obtained using rectangular collocation and a small basis set of parameterized Hermite functions. The achievable accuracy of the order of several cm-1 corresponds to the typical experimental resolution. Using normal coordinates makes the equations simple and general and easily applicable to other systems. This calculation is doable on a PC. We predict that anharmonicity and coupling lower the fundamental frequencies by dozens of cm-1, which could affect species assignment.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, J.-T., Zhou, Z.-Y., Broadwell, I., and Sun, S.-G., Acc. Chem. Res. 45, 485 (2012).CrossRefGoogle Scholar
Wang, Y. and Woell, C., Surf. Sci. 603, 1589 (2009).CrossRefGoogle Scholar
Manzhos, S., Carrington, T., and Yamashita, K., Surf. Sci. 605, 616 (2011).CrossRefGoogle Scholar
Benoit, D. M., Madebene, B., Ulusoy, I., Mancera, L., Scribano, Y., and Chulkov, S., Beilstein J. Nanotechnol. 2, 427 (2011).CrossRefGoogle Scholar
Shemesh, D., Mullin, J., Gordon, M. S., and Gerber, R. B., Chem. Phys. 347, 218 (2008).CrossRefGoogle Scholar
Marquardt, R., Cuvelier, F., Olsen, R. A., Baerends, E. J., Tremblay, J. C., and Saalfrank, P., J. Chem. Phys. 132, 074108 (2010).CrossRefGoogle Scholar
Salli, E., Hanninen, V., and Halonen, L., J. Phys. Chem. C 114, 4550 (2010).CrossRefGoogle Scholar
Kossmann, J., Rossmueller, G., and Haettig, C., J. Chem. Phys. 136, 034706 (2012).CrossRefGoogle Scholar
Spencer, M. J. S. and Yarovsky, I., J. Phys. Chem. C 114, 10881 (2010).CrossRefGoogle Scholar
Ulusoy, I. S., Scribano, Y., Benoit, D. M., Tschetschetkin, A., Maurer, N., Koslowski, B., and Ziemann, P., Phys. Chem. Chem. Phys. 13, 612 (2011).CrossRefGoogle Scholar
Bowman, J., Carrington, T., and Meyer, H.-D., Mol. Phys. 106, 2145 (2008).CrossRefGoogle Scholar
Zhong, W., Liu, Y., and Zhang, D., J. Phys. Chem. C 116, 2994 (2012).CrossRefGoogle Scholar
Peng, G., Sibener, S. J., Schatz, G. C., Ceyer, S. T., and Mavrikakis, M., J. Phys. Chem. C 116, 3001 (2012).CrossRefGoogle Scholar
Cuesta, A., Cabello, G., Gutierrez, C., and Osawa, M., Phys. Chem. Chem. Phys. 13, 20091 (2011).CrossRefGoogle Scholar
Lin, S., Xie, D., and Guo, H., J. Phys. Chem. C 115, 20583 (2011).CrossRefGoogle Scholar
Miller, K. L., Musgrave, C. B., Falconer, J. L., and Medlin, J. W., J. Phys. Chem. C 115, 2738 (2011).CrossRefGoogle Scholar
Manzhos, S., Yamashita, K., and Carrington, T., Chem. Phys. Lett. 474, 217 (2009).CrossRefGoogle Scholar
Manzhos, S. and Carrington, T., Can. J. Chem. 87, 864 (2009).CrossRefGoogle Scholar
Manzhos, S., Yamashita, K., and Carrington, T., Chem. Phys. Lett. 511, 434 (2011).CrossRefGoogle Scholar
Chan, M., Manzhos, S., Carrington, T., and Yamashita, K., J. Chem. Theory Comput. 8, 2053 (2012).CrossRefGoogle Scholar
Manzhos, S., Carrington, T., and Yamashita, K., in Computer Physics, edited by Doherty, B. S. and Molloy, A. N. (Nova Publishers, Hauppauge NY, 2012), pp. 237266.Google Scholar
Soler, J. M., Artacho, E., Dale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., J. Phys.: Condens. Matter. 14, 2745 (2002).Google Scholar
Perdew, J. P., Burke, K., and Ernzerhoff, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Sobol, I. M., USSR Comput. Math. Math. Phys. 7, 86 (1967).CrossRefGoogle Scholar
Noei, H., Woell, C., Muhler, M., and Wang, Y., J. Phys. Chem. C 115, 908 (2011).CrossRefGoogle Scholar