Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T07:19:32.627Z Has data issue: false hasContentIssue false

Towards 3D image-based nanocrystallography by means of transmission electron goniometry

Published online by Cambridge University Press:  01 February 2011

Peter Moeck
Affiliation:
Department of Physics, Portland State University, P.O. Box 751, Portland, OR 97207–0751
Wentao Qin
Affiliation:
Technology Solutions, Freescale Semiconductor, Inc., MD CH305, Chandler, AZ 85224
Philip B. Fraundorf
Affiliation:
Department of Physics and Astronomy and Center for Molecular Electronics, University of Missouri at St. Louis, MO 53121
Get access

Abstract

It is well known that the crystallographic phase and morphology of many materials changes with the crystal size in the tens of nanometer range and that many nanocrystals possess structural defects in excess of their equilibrium levels. A need to determine the ideal and real structure of individual nanoparticles, therefore, arises. High-resolution phase-contrast transmission electron microscopy (TEM) and atomic resolution Z-contrast scanning TEM (STEM) when combined with transmission electron goniometry offer the opportunity of develop dedicated methods for the crystallographic characterization of nanoparticles in three dimensions. This paper describes tilt strategies for taking data from individual nanocrystals “as found”, so as to provide information on their lattice structure and orientation, as well as on the structure and orientation of their surfaces and structural defects. Internet based java applets that facilitate the application of this technique for cubic crystals with calibrated tilt-rotation and double-tilt holders are mentioned briefly. The enhanced viability of image-based nanocrystallography in future aberration-corrected TEMs and STEMs is illustrated on a nanocrystal model system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fraundorf, P., Determining the 3D Lattice Parameters of Nanometer-sized Single Crystals from Images, Ultramicroscopy 22, 225230 (1987)Google Scholar
2. Möck, P., Verfahren zur Durchführung und Auswertung von elektronenmikroskopischen Untersuchungen, German patents DE 4037346 A1 and DD 301839 A7, priority date: 21 November, 1989 Google Scholar
3. Fraundorf, P., Stereo Analysis of Single Crystal Electron Diffraction Data, Ultramicroscopy 6, 227236 (1981)Google Scholar
4. Fraundorf, P., Stereo Analysis of Electron Diffraction Pattern from Known Crystals, Ultramicroscopy 7, 203206 (1981)Google Scholar
5. Möck, P., A Direct Method for Orientation Determination Using TEM (I), Description of the Method, Cryst. Res. Technol. 26, 653658 (1991); A Direct Method for Orientation Determination Using TEM (II), Experimental Example, Cryst. Res. Technol. 26, 797–801 (1991)Google Scholar
6. Möck, P., A Direct Method for the Determination of Orientation Relationships Using TEM, Cryst. Res. Technol. 26, 975–962 (1991)Google Scholar
7. Möck, P. and Hoppe, W., ELCRYSAN - A program for direct crystallographic analyses, Proc. 10th European Conference on Electron Microscopy Vol. 1, 193194 (1992)Google Scholar
8. Möck, P., Estimation of Crystal Textures using Electron Microscopy, Beitr. Elektronenmikroskop. Direktabb. Oberfl. 28, 3136 (1995).Google Scholar
9. Prantl, W., A computer program for the evaluation of orientation relationships from simple electron-diffraction spot patterns, J. Appl. Cryst. 20, 439440 (1987)Google Scholar
10. Prantl, W., A computer program for trace analyses in transmission electron microscopy, J. Appl. Cryst. 20, 440441 (1987)Google Scholar
11. Chou, C.T., Computer Software for Specimen Orientation Adjustment Using Double-Tilt or Rotation Holders, J. Electron. Microsc. Technique 7, 263268 (1987).Google Scholar
12. Qin, W. and Fraundorf, P., Lattice parameters from direct-space images at two tilts, Ultramicroscopy 94, 245262 (2003)Google Scholar
13. Qin, W., Direct space nano(crystallography) via high-resolution Transmission Electron Microscopy, PhD thesis, University of Missouri-Rolla, 2000 Google Scholar
14. Pond, R.C.. Line Defects in Interfaces; in Dislocations in Solids 8, 1 (1989), ed. F.R.N. Nabarro (Elsevier)Google Scholar
15. Barker, T.V., Systematic Crystallography: An Essay on Crystal Description, Classification and identification, (Thomas Murby & Co, London, 1930)Google Scholar
16. Porter, M.W. and Spiller, R.C., The Barker Index of Crystals, (W. Heffer and Sons, Cambridge, 1951)Google Scholar
17. Boldyrew, A.K., Bestimmungstabellen für Kristalle, Band I, (Leningrad, 1936)Google Scholar
18. Johari, O. and Thomas, G., The stereographic projection and its application (Wiley, 1969)Google Scholar
19. Hessel, J.F.C., Krystallometrie, , oder Krystallonomie und Krystallographie auf eigentümliche Weise und mit Zugrundelegung neuerer allgemeiner Lehren der reinen Gestaltenkunde, sowie mit vollständiger Berücksichtigung der wichtigsten Arbeitern und Methoden anderer Krystallographen, 1830, (Ostwald's Klassiker der exakten Wissenschaften Nr. 88, Wilhelm Englemann, Leipzig, 1897)Google Scholar
20. Goldschmidt, V., Krystallographische Winkeltabellen, (Berlin, 1897)Google Scholar
21. Fedorow, E.S., Das Kristallreich: Tabellen zur Kristallochemischen Analyse, mit Atlas ( 1920)Google Scholar
22. Terpstra, P. and Godd, L.W., Crystallometry, (Academic Press, New York, 1961)Google Scholar
23. Li, X.Z., JECP/SP: a computer program for generating stereographic projections, applicable to specimen orientation adjustment in TEM experiments, J. Appl. Cryst. 37 (2004) 506507 Google Scholar
26. Batenburg, K.J., Electronic notes in discrete mathematics 12 (2003), Elsevier onlineGoogle Scholar
27. Kisielowski, C., private communicationsGoogle Scholar
28. Moeck, P., Kapilashrami, M., Rao, A., Aldushin, K., Lee, J., Morris, J.E., Browning, N.D., and McCann, P.J., Nominal PbSe nano-islands on PbTe: grown by MBE, analyzed by AFM and TEM, Mat. Res. Soc. Symp. Proc. Vol. 839 (2005) P.4.3.1–P.4.3.6Google Scholar
29. Moeck, P., Qin, W., and Fraundorf, P.B., Image-based nanocrystallography in future aberration corrected transmission electron microscopes, Mat. Res. Soc. Symp. Proc. Vol. 818 (2004) M11.3.1–M11.3.6Google Scholar