Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:28:57.119Z Has data issue: false hasContentIssue false

Toward the Elimination of Light-Induced Degradation of Amorphous Si by Fluorine Incorporation

Published online by Cambridge University Press:  21 February 2011

X. Deng
Affiliation:
Energy Conversion Devices, Inc. 1675 West Maple Road, Troy, Michigan 48084
E. Mytilineou
Affiliation:
Energy Conversion Devices, Inc. 1675 West Maple Road, Troy, Michigan 48084
R. T. Young
Affiliation:
Energy Conversion Devices, Inc. 1675 West Maple Road, Troy, Michigan 48084
S. R. Ovshinsky
Affiliation:
Energy Conversion Devices, Inc. 1675 West Maple Road, Troy, Michigan 48084
Get access

Abstract

We report on evidence that fluorine, properly incorporated into a-Si, replaces weakly bonded hydrogen and improves the material stability under light soaking. Our fluorinated amorphous silicon (a-Si:H:F) is made by if glow discharge at high deposition temperatures up to 430 C from a gas mixture of SiH4 or Si2H6 and F2. These a-Si:H:F films show much lower density of states in the light soaking saturated state than device quality a-Si:H prepared in the same deposition system. It is evident from our results that fluorine incorporated into the network at such high deposition temperature makes for a new configuration which minimizes dangling bonds and other defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett., 31, 292 (1977).CrossRefGoogle Scholar
2. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
3. Kakalios, J., Street, R. A., and Jackson, W. B., Phys. Rev. Lett., 59, 1037 (1987);CrossRefGoogle Scholar
Kakalios, J. and Jackson, W. B., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific, Singapore, 1989) pp. 207245.Google Scholar
4. Ovshinsky, S. R. and Madan, A., Nature, 276, 482 (1978);Google Scholar
Madan, A., Ovshinsky, S. R. and Benn, E., Phil. Mag. B 40, 259 (1979).Google Scholar
5. Jackson, W. B. and Amer, N. M., Phys. Rev. B 25, 5559 (1982).Google Scholar
6. Deng, X., Phys. Rev. B 43, 4820 (1991).Google Scholar
7. Fang, C. J., Ley, L., Shanks, H. R., Gruntz, K. J., and Cardona, M., Phys. Rev. B 22, 6140 (1980).Google Scholar
8. Lucovsky, G., Solar Cells 2, 431 (1980).Google Scholar
9. Shanks, H., Fang, C. J., Ley, L., Cardona, M., Demond, F. J., and Kalbitzer, S., Phys. Status Solidi B 100, 43 (1980).Google Scholar
10. Lucovsky, G., Solid State Commun., 29, 571 (1979).Google Scholar
11. Park, H. R., Liu, J. Z., and Wagner, S., Appl. Phys. Lett., 55, 2638 (1989).Google Scholar
12. Cody, G. D., Wronski, C. R., Abeles, B., Stephens, R. B., and Brooks, B., Solar Cells, 2, 227 (1980).Google Scholar
13. Tanielian, M., Phil. Mag. B 45, 435 (1982);CrossRefGoogle Scholar
Aker, B. and Fritzsche, H., J. Appl. Phys., 54, 6628 (1983).Google Scholar
14. Fritzsche, J., Tanielian, M., Tsai, C. C., and Gaczi, P. J., J. Appl. Phys., 50, 3366 (1979).Google Scholar
15. Edwards, J. G., Franklin, H. F. and Gilles, P. W., J. Chem. Phys., 54, 545 (1971).CrossRefGoogle Scholar
16. Janai, M., Weil, R., and Pratt, B., Phys. Rev. B 31, 5311 (1985).CrossRefGoogle Scholar
17. Usui, S. and Kikuchi, M., J. Non-Cryst. Solids, 34, 1 (1979);Google Scholar
Tsai, C. C., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific, Singapore, 1989) pp. 123147.CrossRefGoogle Scholar
18. Street, R. A., Kakalios, J., and Hayes, T. M., Phys. Rev. B 34, 3030 (1986);Google Scholar
Street, R. A., Kakalios, J., Phil. Mag. B 54, L21 (1986);Google Scholar
Deng, X. and Fritzsche, H., Phys. Rev. B 36, 9378 (1987).Google Scholar