Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:30:42.306Z Has data issue: false hasContentIssue false

Toughness and Subcritical Crack Growth in Nb/Nb3Al Layered Materials

Published online by Cambridge University Press:  10 February 2011

D. R. Bloyer
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720-1760
K. T. Venkateswara Rao
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720-1760
R. O. Ritchie
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720-1760
Get access

Abstract

A brittle intermetallic, Nb3Al, reinforced with a ductile metal, Nb, has been used to investigate the resistance curve and cyclic fatigue behavior of a relatively coarse laminated composite. With this system, the toughness of Nb3Al was found to increase from ∼1 MPa√m to well over 20 MPa√m after several millimeters of stable crack growth; this was attributed to extensive crack bridging and plastic deformation within the Nb layers in the crack wake. Cyclic fatigue-crack growth resistance was also improved in the laminate microstructures compared to pure Nb3Al and Nb-particulate reinforced Nb3Al composites with crack arrester orientations in the laminate providing better fatigue resistance than either the matrix or pure Nb.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fleischer, R.L. in High Temperature Ordered Intermetallic Alloys 111, edited by Liu, C.T. et al. (MRS Symp. Proc. 133, Pittsburgh, PA, 1989), p. 305.Google Scholar
2. Anton, D.L. and Shah, D.M. in High Temperature Ordered Intermetallic Alloys mI, edited by Liu, C.T. et al. (MRS Symp. Proc. 133, Pittsburgh, PA, 1989), p. 361.Google Scholar
3. Anton, D.L. and Shah, D.M. in Intermetallic Matrix Composites, edited by Anton, D.L., et al. (MRS Symp. Proc. 194, Pittsburgh, PA, 1990), p. 45.Google Scholar
4. Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).Google Scholar
5. Ritchie, R.O., Mater. Sci. Eng. A 103, 15 (1988).Google Scholar
6. Murugesh, L., Rao, K.T. Venkateswara and Ritchie, R.O., Scripta Metall. Mater. 41, 1107 (1993).Google Scholar
7. Bencher, C.D., Sakaida, A., Rao, K.T. Venkateswara and Ritchie, R.O., Metall. Mater. Trans. A 26, 2027 (1995).Google Scholar
8. Cao, H.C., Löfvander, J.P. A., Evans, A.G. and Rowe, R.G., Mater. Sci. Eng. A A 185, 87 (1994).Google Scholar
9. Rowe, R.G., Skelly, D.W., Larsen, M., Heathcote, J., Lucas, G. and Odette, G.R. in High Temperature Silicides and Refractory Metals, edited by Briant, C.L., et al. (MRS Symp. Proc. Vol.322, Pittsburgh, PA, 1994) p. 461.Google Scholar
10. Bloyer, D.R., Rao, K.T. Venkateswara and Ritchie, R.O., Mater. Sci. Eng. A (1996) in press.Google Scholar
11. Bloyer, D.R., Rao, K.T. Venkateswara and Ritchie, R.O. in Proc. Johannes Weertman Symposium (The Minerals, Metals & Materials Society, Warrendale, PA, 1996) in press.Google Scholar
12. Rao, K.T. Venkateswara and Ritchie, R.O. in Fatigue and Fracture of Ordered Intermetallic Materials I, edited by Soboyejo, W. O., Srivatsan, T. S. and Davidson, D. L. (The Minerals, Metals & Materials Society, Warrendale, PA, 1994), p. 3 Google Scholar
13. Rao, K.T. Venkateswara, Soboyejo, W.O. and Ritchie, R.O., Metall. Trans. A 23A, 2249 (1992).Google Scholar
14. Badrinarayanan, K., McKelvey, A. L., Rao, K.T. Venkateswara and Ritchie, R.O., Metall. Mater.Trans. A 27A (1996) in press.Google Scholar
15. Bannister, M. and Ashby, M. F., Acta Metall. Mater. 39, 2575 (1991).Google Scholar
16. Ashby, M.F., Blunt, F.J. and Bannister, M., Acta Metall. Mater. 37, 1847 (1989).Google Scholar
17. Rao, K.T. Venkateswara, Odette, G.R. and Ritchie, R.O., Acta Metall. Mater. 40, 353 (1992).Google Scholar
18. Dève, H.E., Evans, A.G., Odette, G.R., Mehrabian, R., Emiliani, M.L. and Hecht, R.J., Acta Metall. Mater. 38, 1491 (1990).Google Scholar
19. ASM Metals Handbook, 101h ed., Vol.2, (ASM Intl., Materials Park, OH, 1994) p. 559.Google Scholar
20. Budiansky, B., Amazigo, J. C. and Evans, A. G., J. Mech. Phys. Solids 36, 167 (1988).Google Scholar
21. Zok, F. and Hom, C. L., Acta Metall. Mater. 38, 1895 (1990).Google Scholar
22. Tada, H., Paris, P. C. and Irwin, G. R., in Stress Analysis of Cracks Handbook, Del Research Corp./Paris Publ., St. Louis, MO, 1985.Google Scholar
23. Odette, G.R., Chao, B.L., Sheckhard, J.W. and Lucas, G.E., Acta Metall. Mater. 40, 2381 (1992).Google Scholar
24. Rao, K.T. Venkateswara, Odette, G.R. and Ritchie, R.O., Acta Metall. Mater. 42, 893 (1994).Google Scholar