Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:45:44.311Z Has data issue: false hasContentIssue false

Titanium Hafnium Oxide Alloy Films by a Novel Sub-Atomic Layer Sputtering Process for High Index and Graded Index Applications

Published online by Cambridge University Press:  07 October 2013

Nobuhiko P. Kobayashi
Affiliation:
Baskin School of Engineering, UCSC, Santa Cruz, CA, U.S.A.; Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz - NASA Ames Research Center, Moffett Field, CA, U.S.A.
R. Ernest Demaray
Affiliation:
Antropy Inc. & Demaray LLC, Portola Valley, California, U.S.A.
Junce Zhang
Affiliation:
Baskin School of Engineering, UCSC, Santa Cruz, CA, U.S.A.; Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz - NASA Ames Research Center, Moffett Field, CA, U.S.A.
Kate J. Norris
Affiliation:
Baskin School of Engineering, UCSC, Santa Cruz, CA, U.S.A.; Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz - NASA Ames Research Center, Moffett Field, CA, U.S.A.
David M. Fryauf
Affiliation:
Baskin School of Engineering, UCSC, Santa Cruz, CA, U.S.A.; Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz - NASA Ames Research Center, Moffett Field, CA, U.S.A.
Juan J. Díaz León
Affiliation:
Baskin School of Engineering, UCSC, Santa Cruz, CA, U.S.A.; Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz - NASA Ames Research Center, Moffett Field, CA, U.S.A.
Amanda Flores
Affiliation:
Baskin School of Engineering, UCSC, Santa Cruz, CA, U.S.A.; Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz - NASA Ames Research Center, Moffett Field, CA, U.S.A.
Ravi Mullapdi
Affiliation:
Tango Systems, Inc. San Jose, California, U.S.A.
Tana Arunagiri
Affiliation:
Tango Systems, Inc. San Jose, California, U.S.A.
Lai Lu
Affiliation:
Tango Systems, Inc. San Jose, California, U.S.A.
Get access

Abstract

We studied physical properties of titanium hafnium oxide (TixHf1-xO2) alloy thin films deposited by pulsed DC reactive magnetron sputtering with AC substrate bias. Thin films of two end oxides, hafnium oxides (HfO2) and titanium oxides (TiO2), and their alloys TixHf1-xO2 with a range of compositions deposited with and without the substrate bias were compared to study the dependence of physical properties of the thin films on the substrate bias. Structural, chemical and optical properties of the thin films were analyzed to assess inter-relationship among these properties. Thin films deposited with the AC substrate bias consistently show much higher refractive index and significantly lower optical extinction coefficient than those of thin films deposited without the substrate bias suggesting that characteristic microstructures developed in these thin films are responsible for the differences in the optical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wilk, G. D., Wallace, R. M. and Anthony, J. M., Journal of Applied Physics 89, 5243 (2001).CrossRefGoogle Scholar
Peacock, P. W., Robertson, J., Journal of Applied Physics 92, 4712 (2002).CrossRefGoogle Scholar
Mise, N., Ogawa, A., Tonomura, O., Sekiguchi, T., Horii, S., Itatani, H., Saito, T., Sakai, M., Takebayashi, Y., Yamazaki, H. and Torii, K., IEEE Transactions on Electron Devices, 57, 2080 (2010).CrossRefGoogle Scholar
Adam, J. and Rogers, M. D., Acta Cryst. 12, 951 (1959).CrossRefGoogle Scholar
Ghosh, T. B., Dhabal, S. and Datta, A. K., Journal of Applied Physics 94, 4577 (2003).CrossRefGoogle Scholar
Smith, S. J., Stevens, R., Liu, S. F., Li, G. S., Navrofsky, A., Boerio-Goates, J. and Woodfield, B. F., American Mineralogist 94, 236 (2009).CrossRefGoogle Scholar
Jamieson, J. and Olinger, B. B, Miner Notes 54, 1477 (1969).Google Scholar
Ding, X. Z., Liu, X. H. and He, Y. Z., Journal of Materials Science Letters 15, 1789 (1996).CrossRefGoogle Scholar
Aguirre, B., Vemuri, R. S., Zubia, D., Shutthananadan, V., Kamala, K. B. and Ramana, C. V., Applied Surface Science 257, 2197 (2011).CrossRefGoogle Scholar
Toledano-Luque, M., Martınez, F. L., San Andres, E., del Prado, A., Martil, I., Gonzalez-Dıaz, G., Bohne, W., Rohrich, J. and Strub, E., Vacuum 82, 1391 (2008).CrossRefGoogle Scholar
Pereira, L., Barquinha, P., Fortunato, E. and Martins, R., Materials Science and Engineering B-Solid State Materials for Advanced Technology 118, 210 (2005).CrossRefGoogle Scholar
He, Q., Guo, H.-B., Wei, J.-J., Askari, S. J., Wang, H.-B., Zhang, S.-Y., Yang, H., Su, X.-P. and Lu, F.-X., Thin Solid Films 516, 4695 (2008).CrossRefGoogle Scholar
Martin, N., Rousselot, C., Rondot, D., Palmino, F. and Mercier, R., Thin Solid Films 300, 113 (1997).CrossRefGoogle Scholar
Amor, S. B., Guedri, L., Baud, G., Jacquet, M. and Ghedira, M., Materials Chemistry and Physics 77, 903 (2002).CrossRefGoogle Scholar
Shin, J. W., Lee, J. Y., Kim, T. W., No, Y. S., Cho, W. J. and K Choi, W., Applied Physics Letters 88, 091911 (2006).CrossRefGoogle Scholar
Li, Z., Xing, L., Zhang, N., Yang, Y. and Zhang, Z., Materials Transactions 52, 1939 (2011).CrossRefGoogle Scholar
van de Pol, F. C. M., Blom, F. R. and Popma, Th. J. A., Thin Solid Films 204, 349 (1991).CrossRefGoogle Scholar
Holt, D. B. and Joy, D. C., “SEM Microcharacterization of Semiconductors,” Academic Press, London, (1989).Google Scholar
Kanaya, K. and Okayama, S., Journal of Physics D5, 43 (1972).Google Scholar