Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:27:16.208Z Has data issue: false hasContentIssue false

TiSi2 Phase Transformation by Amorphization Techniques

Published online by Cambridge University Press:  10 February 2011

Tord Karlin
Affiliation:
Royal Institute of Technology (KTH), Solid State Electronics, P.O. Box Electrum 229, S-164 40 Stockholm, Sweden, [email protected]
Martin Samuelsson
Affiliation:
Royal Institute of Technology (KTH), Solid State Electronics, P.O. Box Electrum 229, S-164 40 Stockholm, Sweden, [email protected]
Stefan Nygren
Affiliation:
Ericsson Components AB, S-164 81 Stockholm, Sweden, [email protected]
Mikael östling
Affiliation:
Royal Institute of Technology (KTH), Solid State Electronics, P.O. Box Electrum 229, S-164 40 Stockholm, Sweden, [email protected]
Get access

Abstract

ULSI packing density calls for sub-micron line widths, but on n-type polysilicon this can lead to incomplete titanium silicide C49 to C54 phase transformation after a conventional two step rapid thermal anneal (RTA). This study compares three different ion beam amorphization techniques: preamorphization, ion beam mixing and silicide amorphization, aiming at a complete phase transformation for submicron silicide lines. For preamorphization, an arsenic implantation at moderate energies (35–75 keV) was used to amorphize the top layer of the polysilicon prior to the titanium deposition. Ion beam mixing used a high-energy (200 keV) arsenic implantation after the titanium deposition to create an amorphous mix of silicon and titanium. These two methods did, each by themselves, lead to an increased fraction of C54 silicide grains already during the low temperature RTA, and a complete phase transformation during the subsequent high temperature RTA. Both methods lowered the thickness difference between titanium silicide on p- and n-type silicon. Silicide amorphization with 75 keV arsenic or 100 keV antimony, applied before the second RTA, did not significantly improve the silicide phase transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beyers, R., Coulman, D., and Merchant, P., J. Appl. Phys 61, 5110 (1987).Google Scholar
2. Sakai, I., Abiko, H., Kawaguchi, H., Hirayama, T., Johansson, L. E. G., and Okabe, K., IEDM Tech. Digest, 66 (1992).Google Scholar
3. Mann, R. W., Miles, G. L., Knotts, T. A., Rakowski, D. W., Clevenger, L. A., Harper, J. M. E., d'Heurle, F. M., and Jr, C. C.., Appl. Phys. Lett. 67, 3729 (1995).Google Scholar
4. Miles, G. L., Mann, R. W., and Bertsch, J. E., Thin Solid Films 290–291, 469 (1996).Google Scholar
5. Ohguro, T., Nakamura, S.-I., Koike, M., Morimoto, T., Nishiyama, A., Ushiku, Y., Yoshitomi, T., Ono, M., Saito, M., and Iwai, H., IEEE Trans. Electr. Dev. 41, 2305 (1994).Google Scholar
6. Svensson, B. G., Jagadish, C., Hallön, A., and Lalita, J., Nucl. Instr. and Meth. in Phys. Res. B 106, 183 (1995).Google Scholar
7. Caturla, M. J., Rubia, T. D. d. l., and Gilmer, G. H., Instr, Nucl.. and , Meth. in Phys. Res. B 106, 1 (1995).Google Scholar
8. Linnros, J., Svensson, B., and Holmön, G., Phys. Rev. B 30, 3629 (1984).Google Scholar
9. Ma, Z. and Allen, L. H., J. Appl. Phys 77, 4384 (1995).Google Scholar