Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T06:27:50.014Z Has data issue: false hasContentIssue false

TiO2-Polyheptazine Hybrid Photoanodes for Visible Light-Driven Water Splitting: The Effect of External Bias

Published online by Cambridge University Press:  13 June 2012

Michal Bledowski
Affiliation:
Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
Lidong Wang
Affiliation:
Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
Ayyappan Ramakrishnan
Affiliation:
Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
Radim Beranek
Affiliation:
Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
Get access

Abstract

Visible (λ > 420 nm) light-driven photooxidation of water at TiO2-polyheptazine (TiO2-PH) hybrid photoanodes loaded with two different metal oxide co-catalysts was investigated in a twoelectrode setup. As compared to TiO2-PH photoanodes loaded with colloidal IrO2, photoelectrodes modified with photodeposited CoOx oxygen-evolving co-catalyst (Co-Pi) showed both higher photocurrents and more efficient oxygen evolution. The minimum external electric bias needed to observe complete photooxidation of water to dioxygen at TiO2-PH photoanodes modified with Co-Pi was estimated to be ca. 0.6 V at pH 7.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lewis, N.S. and Nocera, D.G., Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).Google Scholar
2. Khaselev, O. and Turner, J.A., Science 280, 425 (1998).Google Scholar
3. Heller, A., Acc. Chem. Res. 14, 154 (1981).Google Scholar
4. Lewerenz, H.J., Heine, C., Skorupska, K., Szabo, N., Hannappel, T., Vo-Dinh, T., Campbell, S.A., Klemm, H.W. and Munoz, A.G., Energy Environ. Sci. 3, 748 (2010).Google Scholar
5. Licht, S., Wang, B., Mukerji, S., Soga, T., Umeno, M. and Tributsch, H., Int. J. Hydrogen Energy 26, 653 (2001).Google Scholar
6. Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S. and Strasser, P., ChemCatChem 2, 724 (2010).Google Scholar
7. Rossmeisl, J., Qu, Z.W., Zhu, H., Kroes, G.J. and Norskov, J.K., J. Electroanal. Chem. 607, 83 (2007).Google Scholar
8. Valdés, A., Qu, Z.W., Kroes, G.J., Rossmeisl, J. and Nørskov, J.K., J. Phys. Chem. C 112, 9872 (2008).Google Scholar
9. Wang, H., Deutsch, T. and Turner, J.A., J. Electrochem. Soc. 155, F91 (2008).Google Scholar
10. van de Krol, R., Liang, Y. and Schoonman, J., J. Mater. Chem. 18, 2311 (2008).Google Scholar
11. Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R. and Augustynski, J., J. Mater. Chem. 18, 2298 (2008).Google Scholar
12. Youngblood, W.J., Lee, S.-H.A., Kobayashi, Y., Hernandez-Pagan, E.A., Hoertz, P.G., Moore, T.A., Moore, A.L., Gust, D. and Mallouk, T.E., J. Am. Chem. Soc. 131, 926 (2009).Google Scholar
13. Tributsch, H., J. Solid State Electrochem. 13, 1127 (2009).Google Scholar
14. Dau, H. and Zaharieva, I., Acc. Chem. Res. 42, 1861 (2009).Google Scholar
15. Rossmeisl, J., Dimitrievski, K., Siegbahn, P. and Norskov, J.K., J. Phys. Chem. C 111, 18821 (2007).Google Scholar
16. Youngblood, W.J., Lee, S.-H.A., Maeda, K. and Mallouk, T.E., Acc. Chem. Res. 42, 1966 (2009).Google Scholar
17. Bledowski, M., Wang, L., Ramakrishnan, A., Khavryuchenko, O.V., Khavryuchenko, V.D., Ricci, P.C., Strunk, J., Cremer, T., Kolbeck, C. and Beranek, R., Phys. Chem. Chem. Phys. 13, 21511 (2011).Google Scholar
18. Wang, L., Bledowski, M., Ramakrishnan, A., König, D., Ludwig, A. and Beranek, R., J. Electrochem. Soc. (2012) (accepted).Google Scholar
19. Bledowski, M., Wang, L., Ramakrishnan, A., Betard, A., Khavryuchenko, O.V. and Beranek, R., ChemPhysChem (2012) (in press; doi:10.1002/cphc.201200071).Google Scholar
20. Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K. and Antonietti, M., Nat. Mater. 8, 76 (2009).Google Scholar
21. Wang, Y., Wang, X. and Antonietti, M., Angew. Chem., Int. Ed. 51, 68 (2012).Google Scholar
22. Kanan, M.W. and Nocera, D.G., Science 321, 1072 (2008).Google Scholar
23. Zhong, D.K., Cornuz, M., Sivula, K., Grätzel, M. and Gamelin, D.R., Energy Environ. Sci. 4, 1759 (2011).Google Scholar
24. Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R. and Domen, K., J. Am. Chem. Soc. 133, 12334 (2011).Google Scholar
25. Peter, L.M., Chem. Rev. 90, 753 (1990).Google Scholar
26. Kay, A., Cesar, I. and Grätzel, M., J. Am. Chem. Soc. 128, 15714 (2006).Google Scholar