Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:40:59.415Z Has data issue: false hasContentIssue false

TiO2 anatase nanotubes for the purification of uranium,arsenic and lead containing water: an X-ray Photoelectron Spectroscopy study

Published online by Cambridge University Press:  31 January 2011

Marco Bonato
Affiliation:
[email protected], University of Bristol, Interface Analysis Centre, 121 St Michael's Hill, Bristol, BS2 8BS, United Kingdom
Kristin Vala Ragnarsdottir
Affiliation:
[email protected], University of Iceland, Institute of Earth Science, School of Engineering and Natural Sciences, Reykjavik, Iceland
Geoffrey C. Allen
Affiliation:
[email protected], University of Bristol, Interface Analysis Centre, Bristol, United Kingdom
Get access

Abstract

TiO2 anatase nanotubes synthesised via anodic oxidation were used as adsorbent for the uptake of U and Pb from aqueous solution and the photoremoval of As(III). An X-ray photoelectron spectroscopy study of the sorbent medium surface revealed a high adsorption of U and Pb at pH 8. The adsorption of the uranyl ion was enhanced in an anoxy (N2) atmosphere, because this prevents the formation of very stable carbonyl complexes. As(III) was adsorbed on TiO2 but in the presence of O2 and UV light was oxidized to As(V). XPS analysis revealed that in the pH range 3-9 As(V) was always the major species detected at the surface of the titania photocatalyst.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Arabatzis, M. Antonaraki, S. Stergiopoulos, T. Hiskia, A. Papaconstantinou, E. Bernard, M. C. and Falaras, P. J. Photochem. Photobiol., 149, 237245 (2002).Google Scholar
2 Dutta, P. K. Ray, A. K. Sharma, V. K. Millero, F. J. J. Colloid. Interface Sci., 278, 270275 (2004).Google Scholar
3 Ferguson, M.A. Hoffmann, M. R. Hering, J. G. Environ. Sci. Technol., 29, 18801886 (2005).Google Scholar
4 Gong, D.A., Grimes, C., Varghese, O. K. Chen, Z. Hu, W. Dickey, E. C. J. Mater. Res., 16, 33313334 (2001).Google Scholar
5 Bonato, M. Allen, G. C. Scott, T. B. Micro&Nano Letters, 3, 5761 (2008).Google Scholar
6 Wagner, C. D. Davis, L. E. Zeller, M. V. and Taylor, J. A. Raymond, R. H. and Gale, L. H. Surf. Interf. Anal., 3, 211225, (1981).Google Scholar
7 Yoshida, T. Yamaguchi, T. Iida, Y. and Nakayama, S. J. Nucl. Sci. Technol., 40, 672678, (2003).Google Scholar
8 Abdel-Samad, H. and Watson, P.R. Appl. Surf. Sci., 136, 4654 (1998).Google Scholar
9 Nesbitt, H.W. Muir, I.J. and Pratt, A.R. Geochim. Cosmochim Acta, 59, 17731786 (1995).Google Scholar