Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:47:07.581Z Has data issue: false hasContentIssue false

Tin-Doped Hematite Nanoparticles for Gas-Sensing Applications

Published online by Cambridge University Press:  01 February 2011

Monica Sorescu
Affiliation:
[email protected], Duquesne University, Physics, 600 Forbes Avenue, Pittsburgh, PA, 15282-0321, United States, (412) 396-4166, (412) 396-4829
Lucian Diamandescu
Affiliation:
[email protected], National Institute for Materials Physics, Materials Science, Romania
Doina Tarabasanu-Mihaila
Affiliation:
[email protected], National Institute for Materials Physics, Materials Science, Romania
Get access

Abstract

Structural and morphological characteristics of (1-x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. On the basis of the Rietveld structure refinements of the XRD spectra at low tin content, it was found that Sn4+ partially substitutes for Fe3+ at the octahedral sites. The mean particle dimension decreases from 70 to 6 nm as the molar fraction x increases. The estimated solubility limits in the system of tin-doped hematite nanoparticles synthesized under hydrothermal conditions are x<0.2 for Sn4+ in α-Fe2O3 and x>0.7 for Fe3+ in SnO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gopel, W., Sens. Actuators B 18–19, 1 (1994).Google Scholar
2. Yamazoe, N., Miura, N., Sens. Actuators B 20, 95 (1994).Google Scholar
3. Tamaki, J., Naruo, C., Yamamoto, Y., Matsuoka, M., Sens. Actuators B 83, 190 (2002).Google Scholar
4. Jiang, J. Z., Liu, R., Nielsen, K., Poulsen, F. W., Berry, F. J., Clasen, R., Phys. Rev. B 55, 11 (1997).Google Scholar
5. Jiang, J. Z., Liu, R., Nielsen, K., Morup, S., Dam-Johansen, K., Clasen, R., J. Phys. D: Appl. Phys. 30, 1459 (1997).Google Scholar
6. Zhu, W., Tan, O. K., Jiang, J. Z., J. Mater. Electron. 9, 275 (1998).Google Scholar
7. Tan, O. K., Zhu, W., Yan, Q., Kong, L. B., Sens. Actuators B 65, 361 (2000).Google Scholar
8. Reddy, C. V. Gopal, Cao, W., Tan, O. K., Zhu, W., Sens. Actuators B 81, 170 (2002).Google Scholar
9. Cassedanne, J., An. Bras. Cienc. 38, 265 (1966).Google Scholar
10. Takano, H., Bando, Y., Nakanishi, N., Sakai, M., Okinaka, H., J. Solid State Chem. 68, 153 (1987).Google Scholar
11. Sorescu, M., Mater. Lett. 54, 256 (2002).Google Scholar