Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:19:41.218Z Has data issue: false hasContentIssue false

Time-Resolved X-Ray Scattering Study of Co Surface Evolution during Low-Energy Ion Irradiation

Published online by Cambridge University Press:  17 March 2011

O. Malis
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, USA
J. M. Pomeroy
Affiliation:
Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, USA Department of Physics, Cornell University, Ithaca, NY 14853, USA
R. L. Headrick
Affiliation:
Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, USA
J. D. Brock
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, USA
Get access

Abstract

The sputter-erosion of hcp Co (0001) single crystal with Ar+ ions in the 100 to 700 eV energy range was investigated using in-situ time-resolved x-ray scattering. At temperatures above 300°C the surface remains relatively smooth, erosion evolving through a layer-by-layer or step flow mechanism. In this regime the ions have a smoothening effect on the surface and the resulting roughness decreases with increasing ion energy. Below 300°C the surface develops a pattern of mounds or pits with a characteristic wavelength. The time, ion energy and temperature dependence of this wavelength were studied in detail. Epitaxial Co thin films thermally evaporated on sapphire were also sputtered through in order to synthesize self-assembled arrays of Co nanoclusters with a narrow size distribution. The degree of local order within the Co dot arrays was examined using atomic force microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Michely, T., Land, T., Littmark, U. and Comsa, G., Surf. Sci. 272, 204 (1991).Google Scholar
2. Rusponi, S., Constantini, G., Boragno, C. and Valbusa, U., Phys. Rev. Lett. 81, 2735 (1998).Google Scholar
3. Erlebacher, J., Aziz, M. J., Chason, E., Sinclair, M. B. and Floro, J. A., Phys. Rev. Lett. 82, 2330 (1999).Google Scholar
4.M. V. Ramana Murty, Curcic, T., Judy, A., Cooper, B. H., Woll, A. R., Brock, J. D., Kycia, S. and Headrick, R. L., Phys. Rev. Lett. 80, 4713 (1998).Google Scholar
5. Facsko, S., Dekorsky, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A. and Hartnagel, H. L., Science 285, 1551 (1999).Google Scholar
6. Headrick, R. L., Kycia, S., Park, Y. K., Woll, A. R., Brock, J. D., Phys. Rev. B54, 14686 (1996).Google Scholar
7. Feidenhans'l, R., Surf. Sci. Rep. 10, 105 (1989).Google Scholar
8.MMurty, . V. Ramana, Couture, A. J., Cooper, B. H., Woll, A. R., Brock, J. D. and Headrick, R., J. Appl. Phys. 88, 597 (2000).Google Scholar
9. Couture, A. Judy, Surface morphology evolution during ion erosion of metal surfaces: scanning tunneling microscopy studies, Ph. D. Thesis, Cornell University, (2000).Google Scholar
10. Siegert, M. and Plischke, M., Phys. Rev. Lett. 73, 1517 (1994).Google Scholar
11. Siegert, M., Phys. Rev. Lett. 81, 5481 (1998).Google Scholar
12. Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A6, 2390 (1988).Google Scholar
13. Cuerno, R. and Barabasi, A.-L., Phys. Rev. Lett. 74, 4746 (1995).Google Scholar
14. Mayer, T. M., Chason, E. and Howard, A. J., J. Appl. Phys. 76, 1633 (1994).Google Scholar