Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:32:21.905Z Has data issue: false hasContentIssue false

Time-Resolved Light-Emission Spectroscopy and Ion Current Measurements from Pulsed-Laser-Evaporated Cadmium Plumes

Published online by Cambridge University Press:  01 January 1992

Y. Rajakarunanayake
Affiliation:
Dept. of Physics and Astronomy, The Univ. of Toledo, Toledo, OH 43606
Y. Luo
Affiliation:
Dept. of Physics and Astronomy, The Univ. of Toledo, Toledo, OH 43606
A. Compaan
Affiliation:
Dept. of Physics and Astronomy, The Univ. of Toledo, Toledo, OH 43606
M.A. Tamor
Affiliation:
Research Staff, Ford Motor Co., Dearborn MI 48121–2053
Get access

Abstract

We have investigated the pulsed laser evaporation of elemental Cd targets, with the aim of understanding the velocity distributions in the plumes and the changes which occur under moderate electrical bias. We report detailed kinetic energy distributions of the species in the laser evaporated plumes. In these experiments, frequency doubled, Q-switched pulses of a Nd:YAG laser were used at a 10 Hz repetition rate to generate the plumes. The velocity distributions of individual atomic species were determined by time-of-flight (TOF) light emission spectroscopy, while the time resolved ion/atom currents were measured with a collector above the target. We have simultaneously measured the dependence of the time resolved optical and electrical signals on the electrical bias applied between target and collector. We find that the typical kinetic energies in the plume are on the order of 10-200 eV, while the ionized species travel two to three times faster than the neutral particles. These results provide fundamental information about the physics of the pulsed laser evaporation process, and subsequent evolution of the plume.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, X. D., Inam, A., Venkatesan, T., Chang, C. C., Chase, E. W., Barboux, P., Tarascon, J. M., and Wilkens, B., Appl. Phys. Lett. 52, 754 (1988); Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-lee, Y. H., McLean, W. L., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).Google Scholar
2. Sankur, H. and Cheung, J. T., J. Vac. Sci. Technol. A1(4), 1807 (1983); Sankur, H., Nelson, J. G., Pritt, A. T., Gunning, W. J., J. Vac. Sci. Technol. A5(1), (1987).Google Scholar
3. Aydinli, A., Contreras Puente, G., Bhat, A., Compaan, A. and Chan, A., J. Vac. Sci. Technol. A9(6), 3031 (1991); Compaan, A., Bhat, A., Tabory, C., Liu, S., Nguyen, M., Aydinli, A., Tsien, L. H., and Bohn, R. G., Solar Cells 30, 79 (1991).Google Scholar
4. Dubowski, J. J., Roth, A. P., Wasilewski, Z. R., and Rolfe, S. J., Appl. Phys. Lett 59, 1591 (1991); Dubowski, J. J., Thompson, J. R., Rolfe, S. J. and McCaffrey, J. P., Superlatt. Microstruct. 9, 327 (1991); J. J. Dubowski, J. Cryst. Growth 101, 105 (1990).Google Scholar
5. Cheung, J. T. and Cheung, D. T., J. Vac. Sci. Technol. 21, 182 (1982).Google Scholar
6. Rajakarunanayake, Y., Luo, Y., Aydinli, A., Lavalle, N. and Compaan, A., to appear in Mat. Res. Soc. Symp. Proc. 268 (1992).Google Scholar
7. Namiki, A., Watabe, K., Fukano, H., Nishigaki, S., and Noda, T., J. Appl. Phys. 54(6), 3443 (1983);Google Scholar
8. Singh, R. K. and Narayan, J., Phys. Rev. B41(13), 8843 (1990).Google Scholar
9. Tomoda, S., Kusunoki, I., and Matsumoto, S., Mass Spectros. 23, 133 (1975).Google Scholar
10. Yao, T. in Atomic Layer Epitaxy, edited by Suntola, T., Chapman and Hall, New York, 1990, p 156.Google Scholar
11. Kelly, R. & Dreyfus, R.W., Surface Science 198, 263 (1988); Kelly, R., J. Chem Phys. 92, 5047 (1990).Google Scholar