Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T22:56:07.400Z Has data issue: false hasContentIssue false

Time-Resolved Gain Dynamics in Silicon Nanocrystals

Published online by Cambridge University Press:  10 February 2011

L. Dal Negro
Affiliation:
INFM-Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38050 Povo (Trento)
M. Cazzanelli
Affiliation:
INFM-Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38050 Povo (Trento)
N. Daldosso
Affiliation:
INFM-Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38050 Povo (Trento)
L. Pavesi
Affiliation:
INFM-Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38050 Povo (Trento)
F. Priolo
Affiliation:
INFM-Dipartimento di Fisica, Università di Catania, Corso Italia 57, I-95129 Catania, Italia
G. Franzò
Affiliation:
INFM-Dipartimento di Fisica, Università di Catania, Corso Italia 57, I-95129 Catania, Italia
D. Pacifici
Affiliation:
INFM-Dipartimento di Fisica, Università di Catania, Corso Italia 57, I-95129 Catania, Italia
F. Iacona
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, I-95121 Catania, Italia
Get access

Abstract

Time-resolved variable stripe length (VSL) experiments on a set of silicon nanocrystal waveguides obtained by plasma enhanced chemical vapor deposition (PECVD) have revealed a fast recombination dynamics (20 ns) related to population inversion under 6 ns optical pumping at 355 nm. Modal gain values about 10 cm-1 have been measured at 760 nm by VSL technique for the fast recombination component while optical losses about 15 cm-1 are measured for the integrated signal in the slow (lifetime of about 10 μs) recombination tail. Threshold behavior in the emission intensity together with a pumping length and pumping power dependence of both the intensity and the time duration of the fast recombination component has been observed. These results are explained within an effective four level model to describe the strong competition among different Auger processes and stimulated emission.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pavesi, L., Negro, L. Dal, Mazzoleni, C., Franzò, G., Priolo, F., Nature 440, 440 (2000).Google Scholar
2. Khriachtchev, L., Rasanen, M., Novikov, S., Sinkkonen, J., Appl. Phys. Lett. 1249, 1249 (2001).Google Scholar
3. Nayfeh, M., Rao, S., Barry, N., Smith, A., Chaieb, S., Appl. Phys. Lett. 121, 121 (2002).Google Scholar
4. Luterova, K., et al., J. Appl. Phys. 2896, 2896 (2002).Google Scholar
5. Malko, A.V., et al., Appl. Phys. Lett. 81, 1303, (2002).Google Scholar
6. Klimov, V.I., et al., Science 290, 314, (2000).Google Scholar
7. Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G., Delerue, C., Phys. Rev. Lett. 197, 197 (1999).Google Scholar
8. Filonov, A. B., Ossicini, S., Bassani, F., d'Avitaya, F. Arnaud, Phys. Rev. B 195717, 195717 (2002).Google Scholar
9. Iacona, F., Franzò, G., and Spinella, C., J. Appl. Phys. 1295, 1295 (2000).Google Scholar
10. Negro, L. Dal et al., Physica E 297, 297 (2003).Google Scholar
11. Delerue, C., et al., Phys. Rev. Lett. 2228, 2228 (1995).Google Scholar
12.R. M'ghaieth, Maaref, H., Mihalcescu, I., Vial, J.C., Phys. Rev. B. 4450, 4450 (1999).Google Scholar
13. Daldosso, N., et al., submitted to Phys. Rev. BGoogle Scholar