Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T15:08:48.365Z Has data issue: false hasContentIssue false

Time-resolved Cavity Ringdown Spectroscopy as a Monitoring Technique of Nanoparticles in Pulsed VHF Plasmas

Published online by Cambridge University Press:  01 February 2011

Takehiko Nagai
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2, 1-1-1 Umezono, Tsukuba, 305-8568, Japan, +81-29-861-3449, +81-29-861-3367
Arno H. M. Smets
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Michio Kondo
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Get access

Abstract

Time-resolved cavity ringdown (τ-CRD) spectroscopy has been applied to monitor the sylil (SiH3) radicals and nano-particles in pulsed very high frequency (VHF) silane (SiH4)/hydrogen (H2) plasmas under microcrystalline silicon (μc-Si:H) deposition conditions. After the plasma ignition, a small constant cavity loss (~100 ppm) on timescales smaller than ~1 s has been observed, whereas on time scales larger than ~1 s after plasma ignition, an additional cavity loss is observed. By variation of the wavelength of the CRD laser pulse, we demonstrate that the cavity loss on time scales smaller than ~1 s reflects the SiH3 absorption. On time scales larger than ~1 s, the additional cavity loss corresponds to the loss of light due to mainly scattering at the nano-particles. Under the conditions studied, the light scattering at nano-particles can be described by Rayleigh scattering during its initial growth. After ~ 2.5 s, the cavity loss reflects the transition of the scattering mechanism from dominant Rayleigh to dominant Mie-scattering. These results are discussed in terms of nano-particles growing in time and further confirmed by additional scanning electron microscopy analyses on the nano-particles created in the plasma pulse.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Spears, K. G.. Roth, T. J., IEEE Trans. Plasma Sci. PS14, 179 (1986).Google Scholar
2 Selwyn, G. S., Singh, J., and Bennett, R. S., J. Vac. Sci. Technol. A7, 2758 (1989).Google Scholar
3 Jellum, G. M., Daugherty, J. E., and Graves, D. B., J. Appl. Phys. 69, 6923 (1991).Google Scholar
4 Shiratani, M., Maeda, S., Koga, K., and Watanabe, Y., Jpn. J. Appl. Phys. 39, 287 (2000).Google Scholar
5 Koga, K., Matsuoka, Y., Tanaka, K., Shiratani, M., and Watanabe, Y., Appl. Phys. Lett. 77, 196 (2000).Google Scholar
6 Childs, M. A. and Gallagher, A., J. Appl. Phys. 87, 1076 (2000); 87, 1086 (2000).Google Scholar
7 Bano, G., Horvath, P., Rozsa, K., and Gallagher, A., J. Appl. Phys. 98, 013304 (2005).Google Scholar
8 Kujundzic, D. and Gallagher, A., J. Appl. Phys. 99, 033301–1 (2006).Google Scholar
9 Nunomura, S., Kita, M., Koga, K., Shiratani, M., and Watanabe, Y., J. Appl. Phys. 99, 083302–1 (2006).Google Scholar
10 Kessels, W. M. M., Leroux, A., Boogaarts, M. G. H., Hoefnagels, J. P. H., Sanden, M. C. M. van de, and Schram, D. C., J. Vac. Sci. Technol. A 19, 467 (2001).Google Scholar
11 Kessels, W. M. M., Hoefnagels, J. P. M., Boogaarts, M. G. H., Schram, D. C., and Sanden, M. C. M. van de, J. Appl. Phys. 89, 2065 (2001).Google Scholar
12 Nozaki, Y., Kitazoe, M., Horii, K., Umemoto, H., Masuda, A., Matsumura, H., Thin Solid Films. 395, 475 (2001).Google Scholar
13 Hoefnagels, J. P. M., Barrell, Y., Kessels, W. M. M., and Sanden, M. C. M. van de, J. Appl. Phys. 96, 4094 (2004).Google Scholar
14 Nagai, T., Smets, A. H. M., and Kondo, M., Jpn. J. Appl. Phys. 45, 8095 (2006).Google Scholar
15 Busch, K. W. and Busch, M. A., Cavity-Ringdown Spectroscopy (Oxford University Press, 1999) Chap. 2.Google Scholar
16 Lightfood, P. D., Becerra, R., Jemi-Alade, A. A., Lesclaux, R., Chem. Phys. Lett. 180, 441 (1991).Google Scholar
17 Olbrich, G., Chem. Phys, 101. 381 (1986).Google Scholar
18 Boogaarts, M. G. H., Böcker, P. J., Kessels, W. M. M., Schram, D. C., and Sanden, M. C. M. van de, Chem. Phys. Lett. 326, 400 (2000).Google Scholar
19 Baklanov, A. V. and Krasnoperov, L. N., J. Phys. Chem. 105, 4917 (2001).Google Scholar
20 Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by small particles (Wiley, New York, 1983).Google Scholar
21 Hong, S. H. and Winter, J., J. Appl. Phys. 100, 064303 (2006).Google Scholar
22 Chan, S. L. and Elliott, S. R., Phys. Rev. B 43, 4423 (1991).Google Scholar
23 Law, A. M. and Kelton, W. D., Simulation Modeling and Analysis (McGraw-Hill, New York, 1986), p164.Google Scholar
24 Kerker, M., The scattering of light and other electromagnetic radiation, (Academic Press, 1969). If the scatter cross-section is known (i.e. the radius and the dielectric constant of the nano-particles is known) the CRD technique provides a direct measure of the nano-particle density.Google Scholar