Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T05:05:02.697Z Has data issue: false hasContentIssue false

The Time-of-Flight Technique Applied to Amorphous Silicon Pin Solar Cells

Published online by Cambridge University Press:  16 February 2011

Hanna Brummack
Affiliation:
Institut Für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
N. Bernhard
Affiliation:
Institut Für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
K. Eberhardt
Affiliation:
Institut Für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
M. B. Schubert
Affiliation:
Institut Für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

Fast transient photocurrent measurements have been performed on a-Si:H based pin diodes with thicknesses down to 0.5 μm. On a thick sample drift mobilities derived in either the small-signal or the space-charge limited current mode are compared. On real solar cell devices in SCL voltage (integral) Mode the electron lifetimes τ are determined from the extraction time of the photo-generated charge in dependence on the degradation state of the sample. A clear and reproducible correlation between lifetime and degradation state has experimentally been established. Lifetimes τ, for which an intensity dependence has been observed in the SCL voltage Mode, are compared to the μτ-product from a small-signal charge collection Measurement. The influence of the real absorption profile on the measurements is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spear, W. E., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific Publ. Co., Singapore, 1988) pp. 721765 Google Scholar
2. Juška, G., Jukonis, G. and Kočka, J., J. Non-Cryst. Sol. 144, 354 (1991)Google Scholar
3. Kočka, J., Juška, G., KlíMa, O., Šípek, E., Nobile, G., Terzini, E. and Conte, G., J. Non-Cryst. Sol. 164–166, 489 (1993)CrossRefGoogle Scholar
4. Kočka, J., Proc. 7th Int. School on Condensed Matter Physics, Varna 1992, edited by Marshall, J. M. et al. (World Scientific Publ. Co., Singapore, 1992) pp. 129145 Google Scholar
5. Kočka, J., KlíMa, O., Juška, G., Hoheisel, M. and Plättner, R., J. Non-Cryst. Sol. 137&138, 427 (1991)CrossRefGoogle Scholar
6. Juška, G., Viliunas, M., KlíMa, O., Šípek, E. and Kočka, J., Phil. Mag. B 69, 277 (1994)CrossRefGoogle Scholar
7. Lampert, M. A. and Mark, P., Current Injection in Solids (Academic Press, New York, 1970)Google Scholar