Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T17:49:02.630Z Has data issue: false hasContentIssue false

Time Resolved Photoluminescence of Si-doped High Al Mole Fraction AlGaN Epilayers Grown by Plasma-Enhanced Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Madalina Furis
Affiliation:
Department of Electrical Engineering, University at Buffalo, Buffalo, NY, 14260, USA
Alexander N. Cartwright
Affiliation:
Department of Electrical Engineering, University at Buffalo, Buffalo, NY, 14260, USA
Jeonghyun Hwang
Affiliation:
Department of Electrical Engineering, Cornell University, Ithaca, NY, 14853USA
William J. Schaff
Affiliation:
Department of Electrical Engineering, Cornell University, Ithaca, NY, 14853USA
Get access

Abstract

We report on detailed temperature dependent, time-resolved photoluminescence (TRPL) studies of Si-doped AlGaN epilayers. In these samples, the Al concentration varies from 25% to 66%. The samples were found to exhibit metallic-like temperature-independent conductivity. The deep level “yellow” emission, whose presence would indicate the existence of a large number of defects associated with growth, Si incorporation, and/or alloy formation, is absent. In addition to emission corresponding to the donor-bound exciton, the PL spectrum exhibits features associated with transitions involving localized carriers. This assignment of the emission mechanisms is based on the activation energies extracted from the temperature dependent photoluminescence (PL) quenching. Specifically, at room temperature the PL spectrum is dominated by transitions involving localized states. The localization energy varied from sample to sample and was observed to be between 115 meV to 200 meV. The PL intensity decay in the lower Al mole fraction epilayers exhibits a slow component associated with the presence of donor-bound excitons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stampfl, C. and Van de Walle, C. G., Applied Physics Letters 72 (4), 459 (1998).Google Scholar
2. Mattila, T. and Nieminen, R. M., Physical Review B 55 (15), 9571 (1997).Google Scholar
3. McCluskey, M. D., Johnson, N. M., Van de Walle, C. G., Bour, D. P., Kneissl, M., and Walukiewicz, W., Physical Review Letters 80 (18), 4008 (1998).Google Scholar
4. Nam, K. B., Li, J., Nakarmi, M. L., Lin, J. Y., and Jiang, H. X., Applied Physics Letters 81 (6), 1038 (2002).Google Scholar
5. Amano, H. and Akasaki, I., Optical Materials 19 (1), 219 (2002);Google Scholar
Korakakis, D., Ng, H. M., Misra, M., Grieshaber, W., and Moustakas, T. D., Mrs Internet Journal of Nitride Semiconductor Research 1 (1–46), art. no. (1996);Google Scholar
Pophristic, M., Guo, S. P., and Peres, B., Applied Physics Letters 82 (24), 4289 (2003).Google Scholar
6. Hwang, J. H., Schaff, W. J., Eastman, L. F., Bradley, S. T., Brillson, L. J., Look, D. C., Wu, J., Walukiewicz, W., Furis, M., and Cartwright, A. N., Applied Physics Letters 81 (27), 5192 (2002).Google Scholar
7. Polyakov, A. Y., Shin, M., Freitas, J. A., Skowronski, M., Greve, D. W., and Wilson, R. G., Journal of Applied Physics 80 (11), 6349 (1996).Google Scholar
8. Reshchikov, M. A., Morkoc, H., Park, S. S., and Lee, K. Y., Applied Physics Letters 81 (26), 4970 (2002).Google Scholar
9. Zeisel, R., Bayerl, M. W., Goennenwein, S. T. B., Dimitrov, R., Ambacher, O., Brandt, M. S., and Stutzmann, M., Physical Review B 61 (24), R16283 (2000).Google Scholar
10. Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Mil'vidskii, M. G., Redwing, J. M., Shin, M., Skowronski, M., Greve, D. W., and Wilson, R. G., Solid-State Electronics 42 (4), 627 (1998).Google Scholar
11. Reshchikov, M. A. and Korotkov, R. Y., Physical Review B 64 (11), art. no. 115205 (2001);Google Scholar
Reynolds, D. C., Look, D. C., Jogai, B., and Molnar, R. J., Journal of Applied Physics 89 (11), 6272 (2001);Google Scholar
Ren, G. B., Dewsnip, D. J., Lacklison, D. E., Orton, J. W., Cheng, T. S., and Foxon, C. T., Materials Science and Engineering B-Solid State Materials for Advanced Technology 43 (1–3), 242 (1997).Google Scholar
12. Sato, T. and Ishiwatari, T., Journal of Applied Physics 91 (8), 5158 (2002).Google Scholar
13. Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., and Eastman, L. F., Journal of Physics-Condensed Matter 14 (13), 3399 (2002).Google Scholar