No CrossRef data available.
Article contents
Time of Flight of Drifting Electrons and Holes in Stabilized a-Se Film
Published online by Cambridge University Press: 01 February 2011
Abstract
Large area, flat panel detectors are being investigated for digital radiogrpahy and fluoroscopy. Theses detectors employ an x-ray conversion layer of photoconductor to detect x-rays. The amorphous selenium layer that is currently being studied for its use as an x-ray photoconductor is not pure a-Se but rather a-Se doped with 0.2-0.5% As and 10-30 ppm Cl, also known as stabilized a-Se. The suitability of the stabilized a-Se is largely determined by its charge on generating, transporting and trapping properties.
In this paper, a conventional time-of-flight measurement was carried out to analyze the transport properties of charge carriers. A laser beam with pulse duration of 5 ns and wavelength of 350 nm was illuminated on the surface of the stabilized a-Se with thickness of 400 μm. The photo response signals of the hole and electron were measured at the applied electric field of 10 V/μm as a function of time. The measured transit times of the hole and electron were about 229.17μs and about 8.73μs at 10 V/μm, respectively. The measured mobility indicated a slight dependence with respect to the applied electric field with a range of 4-10 V/μm. The experimental results showed that the measured mobility of the hole and electron was 0.04584 cm2V-1s-1 and 0.00174 cm2V-1s-1 at the electric field of 10 V/μm.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003