Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T07:34:21.181Z Has data issue: false hasContentIssue false

Time Dependence of Arsenic Precipitates' Size Distribution in Low Temperature GaAs

Published online by Cambridge University Press:  10 February 2011

C.Y. Hung
Affiliation:
Solid State and Photonics Laboratory, Stanford University, Stanford, CA 94305-4055
J.S. Harris Jr
Affiliation:
Solid State and Photonics Laboratory, Stanford University, Stanford, CA 94305-4055
A.F. Marshall
Affiliation:
Center of Materials Science Research, Stanford University, Stanford, CA 94305
R.A. Kiehl
Affiliation:
Solid State and Photonics Laboratory, Stanford University, Stanford, CA 94305-4055
Get access

Abstract

The time dependence of the size distribution of arsenic precipitates during annealing for both large (~10nm) and small size (~4nm) regimes is investigated. A narrowing of the size distribution is observed in the small size regime. This improvement in size uniformity is in marked contrast to what is observed for larger precipitates, which coarsen with a widening distribution similar to that of classical Ostwald ripening. Inverse coarsening caused by an elastic interaction between small precipitates due to coherency strain is a possible mechanism for this interesting and potentially useful behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. , Liliental-Weber, Crystal structure of LT GaAs layers before and after annealing, Material Research Soc. Symp. (1992).Google Scholar
2. Melloch, M. R., et al., Materials Science & Engineering B22 31 (1993).Google Scholar
3. Kiehl, R. A., Saito, M., Yamaguchi, M., 0. Ueda, Yokoyama, N., Appl. Phys. Lett. 66 2194 (1995).Google Scholar
4. Kiehl, R. A., Yamaguchi, M., Ueda, O., Horiguchi, N., Yokoyama, N., Appl. Phys. Lett. 68, p. 478480 (1996).Google Scholar
5. Lifshitz, I. M., Slyozov, V. V., J. Phys. Chem Solids 19 35 (1961).Google Scholar
6. Voorheel, P. W.. Sands, T., Palmstrom, C.J., Harbison, J.P., Keramidas, V.G., Tabatabaie, N., Cheeks, T.L., Ramesh, R. and Silberberg, Y., Materials Science Reports, 5 99 (1990).Google Scholar
7. Hung, C.-Y., Harris, J. S. Jr , Marshall, A. F., Kiehl, R. A., Arsenic precipitation in GaAs for single-electron tunneling applications, Intl. Symp. Compound Semiconductors, San Diego, Calif. (1997).Google Scholar
8. Kawasaki, K., Enomoto, Y., Physica A 150, 463498 (1988).Google Scholar
9. Johnson, W. C., Voorhees, P. W., Zupon, D. E., Metallurgical Trans. A 20A, 11751189 (1989).Google Scholar
10. Doi, M., Miyazaki, T., J. Material Science 27, 62916298 (1992).Google Scholar
11. Numerical Data and Functional Relationships in Science and Technology. Bornstein, Landolt, Eds., New Series (Springer-Verlag, Berlin, 1979), vol. II/II.Google Scholar
12. Liliental-Weber, Z., Cooper, G., Mariella, J. R., Kocot, C., J. Vac. Sci. Technol. B 9, 23232327 (1991).Google Scholar