Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T22:53:29.992Z Has data issue: false hasContentIssue false

A Tight-Binding Hamiltonian for Band Structure and Carrier Transport in Graphene Nanoribbons

Published online by Cambridge University Press:  01 February 2011

Daniel Finkenstadt
Affiliation:
[email protected], U.S. Naval Research Laboratory, Code 6390, 4555 Overlook Ave. SW, Washington, DC, 20375, United States, 202-404-8632
Gary Pennington
Affiliation:
[email protected], U.S. Army Research Laboratory, Adelphi, MD, 20783, United States
Michael J Mehl
Affiliation:
[email protected], U.S. Naval Research Laboratory, Code 6390, 4555 Overlook Ave. SW, Washington, DC, 20375, United States
Get access

Abstract

To understand nanoribbons of graphene, we developed an ab initio parametrized fit to Carbon and Hydrogen chemical data, out to arbitrary neighbor interactions, including relaxations. Our computed band structure confirms the well-known three-family behavior of armchair bangaps but also predicts a similar familial behavior for conductance in nanoribbon transistors. The Boltzmann carrier transport simulations from calculated phonon spectra show, over a range of temperatures, the familial conductance behavior. Both the peak field-effect mobility and the "on" conductance increase with ribbon width, the later being proportional to the width and inversely proportional to the lattice temperature. We will also discuss phonon-limited scattering of charge carriers in graphene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Finkenstadt, D., Pennington, G. and Mehl, M. J., Phys. Rev. B 76, 121405(R)(2007).Google Scholar
2. Pennington, G. and Goldsman, N., Phys. Rev. B 68, 045426 (2003); G. Pennington, N. Goldsman, A. Akturk and A. E. Wickenden, Appl. Phys. Lett. 90, 062110 (2007).Google Scholar
3. Obradovic, B., Kotlyar, R., Heinz, F., Matagne, P., Rakshit, T., Giles, M. D., Stettler, M. A. and Nikonov, D. E., Appl. Phys. Lett. 88, 142102 (2006).Google Scholar
4. The parameters used in this paper are available from the authors, or at http://cstwww.nrl.navy.mil/bind/Google Scholar
5. Papaconstantopoulos, D. A., Mehl, M. J., Erwin, S. C. and Pederson, M. R., in Tight-Binding Approach to Computational Materials Science, edited by Turchi, P., Gonis, A. and Colombo, L., (Mater. Res. Soc. Proc. 491, Pittsburgh, PA, 1998) p. 221.Google Scholar
6. Cohen, R. E., Mehl, M. J. and Papaconstantopoulos, D. A., Phys. Rev. B 50, 14694 (1994); M. J. Mehl and D. A. Papaconstantopoulos, ibid. 54, 4519 (1996).Google Scholar
7. Papaconstantopoulos, D. A. and Mehl, M. J., J. Phys.: Condens. Matter 15, R413 (2003), and references therein.Google Scholar
8. Finkenstadt, D., Bernstein, N., Feldman, J. L., Mehl, M. J. and Papaconstantopoulos, D. A., Phys. Rev. B 74, 184118 (2006).Google Scholar
9. Greathouse, J. A., Cygan, R. T. and Simmons, B. A., J. Phys. Chem. B 110, 6428 (2006).Google Scholar
10. Son, Y.-W., Cohen, M. L. and Louie, S. G., Nature 444, 347 (2006); Phys. Rev. Lett. 97, 216803 (2006).Google Scholar
11. Han, M. Y., Ozyilmaz, B., Zhang, Y. and Kim, P., Phys. Rev. Lett. 98, 206805 (2007).Google Scholar