Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T04:36:35.105Z Has data issue: false hasContentIssue false

TiAlNb-alloy with a modulated B19 containing constituent produced by powder metallurgy

Published online by Cambridge University Press:  07 December 2012

Heike Gabrisch
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck Str.1, 21502 Geesthacht, Germany
Uwe Lorenz
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck Str.1, 21502 Geesthacht, Germany
Michael Oehring
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck Str.1, 21502 Geesthacht, Germany
Jonathan Paul
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck Str.1, 21502 Geesthacht, Germany
Florian Pyczak
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck Str.1, 21502 Geesthacht, Germany
Marcus Rackel
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck Str.1, 21502 Geesthacht, Germany
Frank-Peter Schimansky
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck Str.1, 21502 Geesthacht, Germany
Andreas Stark
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck Str.1, 21502 Geesthacht, Germany
Get access

Abstract

Intermetallic TiAl alloys are of interest to the aero engine industry because of their light weight, corrosion resistance and excellent high temperature strength. This justifies the continued effort to improve properties and processing of these alloys.

A critical parameter that limits the practical implementation of Ti aluminides is their low ductility at room temperature. Recently, a new class of TiAl alloys based on a modulated lath structure has been introduced that exhibit an excellent combination of ductility and strength. A key component in this alloy is the orthorhombic phase B19 that is attributed to alloying with high amounts of niobium. The driving forces and mechanisms that lead to the observed modulated structures involving the B19 phase are not fully understood yet. As a first step to a better understanding we present a study of the thermal stability range of the phases involved.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dimiduk, D.M., Materials Science and Engineering A 263 281 (1999).CrossRefGoogle Scholar
Wu, X., Intermetallics 14 1114 (2006).CrossRefGoogle Scholar
McCullough, C., et al. ., Acta metall. 37 1321 (1989).CrossRefGoogle Scholar
Liu, Z.C., et al. ., Intermetallics 10 653 (2002).CrossRefGoogle Scholar
Appel, F., Oehring, M., and Paul, J.D.H., Advanced Engineering Materials 8 371 (2006).CrossRefGoogle Scholar
Nguyen-Manh, D. and Pettifor, D.G., eds. Origin of Phase and Pseudo-Twinning in Ti-Al-Nb Alloys: a First-Principles Study. Gamma Titanium Aluminides 1999, ed. Kim, D.M.D.Y.W., and Loretto, M.H.. 1999, The Minerals, Metals & Materials Society.Google Scholar
Abe, E., Kumagai, T., and Nakamura, M., Intermetallics 4 327 (1996).CrossRefGoogle Scholar
Gerling, R., Clemens, H., and Schimansky, F.P., Advanced Engineering Materials 6 23 (2004).CrossRefGoogle Scholar
B.f.M.u. -prüfung, http://www.bam.de/de/service/publikationen/powder_cell.htm Google Scholar
Jones, S.A., et al. ., Scripta Metallurgica 22 1235 (1988).CrossRefGoogle Scholar
Cha, L., et al. ., Intermetallics 16 868 (2008).CrossRefGoogle Scholar
Blackburn, M.J., Science, Technology, and Application of Titanium 633 (1970).CrossRefGoogle Scholar
Singh, S.R. and Howe, J.M., Philosophical Magazine A 66 739 (1992).CrossRefGoogle Scholar
Hao, Y.L., et al. ., Acta Materialia 47 1129 (1999).CrossRefGoogle Scholar
Konitzer, D.G., Jones, I.P., and F. H.L, Scripta Metallurgical 20 265(1986).CrossRefGoogle Scholar
Schmoelzer, T., et al. ., Advanced Engineering Materials 14 445 (2012).CrossRefGoogle Scholar
Stark, A., et al. ., Advanced Engineering Materials 13 700 (2011).CrossRefGoogle Scholar