Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:37:59.118Z Has data issue: false hasContentIssue false

Ti - Substituted Mesoporous Molecular Sieves for Catalytic Oxidation of Large Aromatic Compounds Prepared by Neutral Templating Route

Published online by Cambridge University Press:  28 February 2011

Thomas J. Pinnavaia
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Peter T. Tanev
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Jialiang Wang
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Wenzhong Zhang
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Get access

Abstract

A new synthesis route to open framework mesostructures based on H-bonding and self-assembly between neutral primary amine surfactants (S°) and neutral inorganic precursors (I°) has been used to prepare hexagonal mesoporous silicas containing site isolated titanium centers. These new titanosilicates, designated Ti-HMS, exhibit exceptional catalytic reactivity for the oxidation of substrates too large to access the pore structure of conventional titanosilicates, such as titanium silicalite, TS-1. The catalytic properties of Ti-HMS materials for the peroxide oxidation of 2,6- di- tert-butylphenol are compared with those of microporous TS-1 and a mesoporous Ti-MCM-41 analog prepared by an electrostatic templating mechanism using a liquid crystal quaternary ammonium cationic surfactant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Notes

1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature 359, 710 (1992);Google Scholar
Beck, J. S., Vartuli, M. C., Roth, W. J., Leonowitz, M. E., Kresge, C. T., Schmitt, K. O., Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
2. Inagaki, S., Fukushima, Y. and Kuroda, K., J. Chem. Soc. Chem. Commun. 8, 680 (1993).Google Scholar
3. Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T., Sieger, P., Leon, R., Petroff, P. M., Schiith, F. and Stucky, G. D., Nature 368, 317 (1994).Google Scholar
4. Tanev, P. T., Chibwe, M. and Pinnavaia, T. J., Nature 368, 321 (1994).Google Scholar
5. Tanev, P. T. and Pinnavaia, T. J., Science (in press).Google Scholar
6. Taramasso, M., Perego, G., and Notari, B., US Patent No. 4 410 501 (1983).Google Scholar
7. Huybrechts, D. R. C., Bruycker, L. De and Jacobs, P. A., Nature 345, 240 (1990).Google Scholar
8. Notari, B., in Structure-Activity and Selectivity Relationships in Heterogeneous Catalysis, edited by Grasselli, R. K. and Sleight, A. W. (Elsevier, Amsterdam, 1991) pp. 243256.Google Scholar
9. Flanigen, E. M., Bennett, J. M., Grose, R. W., Chen, J. P., Patton, R. L., Kircher, R. M. and Smith, J. V., Nature 271, 512 (1978).Google Scholar
10. Corma, A., Navarro, M. T. and Pariente, J. P., J. Chem. Soc. Chem. Commun. 1994, 147.Google Scholar
11. Corma, A., Navarro, M. T., Pariente, J. P. and Sanchez, F., in Zeolites and Related Microporous Materials, State of the Art 1994, Studies in Surface Science and Catalysis, edited by Weitkamp, J., Karge, H. G., Pfeifer, H. and Hélderich, W. (Elsevier Science B. V., Amsterdam, 1994), vol. 84, pp. 6975.Google Scholar
12. Franke, O., Rathousky, J., Schulz-Ekloff, G., Stèxek, J. and Zukal, A., in Zeolites and Related Microporous Materials, State of the Art 1994, Studies in Surface Science and Catalysis, edited by Weitkamp, J., Karge, H. G., Pfeifer, H. and Hélderich, W. (Elsevier Science B. V., Amsterdam, 1994), vol. 84, pp. 7784.Google Scholar
13. Reddy, K. M., Moudrakovski, I. and Sayari, A., J. Chem. Soc. Chem. Commun. 1994 1059.Google Scholar
14. Tangaraj, A., Kumar, R., Mirajkar, S. P. and Ratnasamy, P., J. Catal. 130, 1 (1991).Google Scholar
15. Beck, J. C., Chu, C. T-W., Johnson, I. D., Kresge, C. T., Leonowitz, M. E., Roth, W. J. and Vartuli, J. C., WO 91/113090 ( 8 August 1991 );Google Scholar
Schmidt, R., Akporiaye, D., Stécker, M. and Ellestad, O. H., in Zeolites and Related Microporous Materials, State of the Art 1994, Studies in Surface Science and Catalysis, edited by Weitkamp, J., Karge, H. G., Pfeifer, H. and Hölderich, W. (Elsevier Science B. V., Amsterdam, 1994), vol. 84, pp. 6168.Google Scholar
16. The framework wall thickness was calculated as a difference between the unit cell parameter (ao = 2d 100/h3) of the hexagonal structure and the framework-confined mesopore size taken from the corresponding Horvath-Kawazoe pore size distribution curve.Google Scholar