Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-07T20:08:29.862Z Has data issue: false hasContentIssue false

Threshold for Single Excimer Laser Pulse Backside Removal of Thin Metal Films from Optical Quartz

Published online by Cambridge University Press:  26 February 2011

R. J. Baseman
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
J. C. Andreshak
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The minimum energy in a 248 nm, 25 ns long excimer laser pulse required to remove thin Au and Cr films from optical quartz has been measured. Heating of the films by the laser has been modelled with a finite element calculation. Assuming that at threshold, all of the laser energy contributes to film removal, the calculations show that the gold films are removed when the heated gold surface reaches the atmospheric boiling point, and that temperatures well in excess of the atmospheric boiling point are required to remove the Cr films, with the required temperatures increasing with film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1). Bohandy, J., Kim, B.F., Adrian, F.J., J. Appl. Phys., 60 , 1538 (1986).Google Scholar
2). Friichtenicht, J.F., Rev. Sci. Instrum., 45 , 51 (1974).Google Scholar
3). Kadota, K., Pospieszczyk, A., Bogen, P., Hintz, E., IEEE Trans. Plas. Sci., PS–12 , 264 (1984); E. Hintz, P. Bogen, J. Nuc. Mat., 128–129 , 229 (1984); T. Yamauchi, S. Sengoku, M. Nagami, H. Maeda, S. Kasai, T. Sugie, H. Kimura, T. Matoba, Jap J. App. Phys., 20 , 1299 (1981).Google Scholar
4). Baseman, R.J., Gupta, A., Sausa, R.C., Progler, C., Symp B, Fall 1987 MRS Meeting, Boston, MA.Google Scholar
5). Adrian, F.J.,, Bohandy, J., Kim, B.F., Jette, A.N., Thompson, P., J. Vac. Sci. Tech. B5 , 1490 (1987).Google Scholar
6). Breton, C., Michelis, C. de, Hecq, W., Mattioli, M., Rev. Phys. Appl. 15 1193 (1980); E.S. Marmar, J.L. Cecchi, S.A. Cohen, Rev. Sci. Instrum., 46 , 1149 (1975); K. Kadota, etal , Rev. Sci. Instrum., 56 , 1036 (1985);Y.T. Lie, A. Pospieszczyk, J.A. Tagle, Fus. Tech., 6 , 447 (1984); R. Koppmann, S.M. Refaei, A. Pospieszczyk, J. Vac. Sci. Tech., A-4 , 79 (1986); J.S. Bakos, P.N. Ignacz, J. Szigeti, J. Kovacs, Appl. Phys. Lett., 51 , 734 (1987); D. Manos, D. Ruzic, R. Moore, S Cohen, J. Vac. Sci Tech., 20 , 1230 (1982).CrossRefGoogle Scholar
7) Palik, E.D., Ed., Handbook of Optical Constants of Solids (Academic Press, New York, 1985).Google Scholar
8) Touloukian, Y.S. Sr. Ed., Thermophysical Properties of Matter , Vol.12, (Plenum Publishing, 1975), pp.61, 125; Vol 1, (Plenum Publishing, 1970), pp 63, 173.Google Scholar
9) Weast, R.C., Ed., CRC Handbook of Chemistry and Physics. 60th Edition , (CRC Press, Boca Raton, FL, 1981), p.D62.Google Scholar
10) Dean, J.A., Ed., Lange's Handbook of Chemistry, 13th edition , (McGraw Hill, 1985), pp.9114, 9–116.Google Scholar
11) Gupta, A., Alcorn, R., Andreshak, J.C., unpublished results.Google Scholar