Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:19:39.841Z Has data issue: false hasContentIssue false

Three-dimensional tomography of single charge inside dielectric materials using electrostatic force microscopy

Published online by Cambridge University Press:  12 January 2012

Clement Riedel
Affiliation:
Institut d’Electronique du Sud, Université Montpellier 2, Montpellier, France Donostia International Physics Center, Universidad del pais vasco, San Sebastian, Spain
Richard Arinero
Affiliation:
Institut d’Electronique du Sud, Université Montpellier 2, Montpellier, France
Angel Alegria
Affiliation:
Donostia International Physics Center, Universidad del pais vasco, San Sebastian, Spain
Juan Colmenero
Affiliation:
Donostia International Physics Center, Universidad del pais vasco, San Sebastian, Spain
Juan Jose Saenz
Affiliation:
Donostia International Physics Center, Universidad del pais vasco, San Sebastian, Spain Universidad Autonoma de Madrid, Moving Light and Electron, Madrid, Spain
Get access

Abstract

In this contribution, we report on a numerical study demonstrating how to realize Electrostatic Force Microscopy (EFM) tomography. Based on the Equivalent Charge Method, both force and force gradient between a buried object (or trapped charges) and the Atomic Force Microscope tip are calculated. The main idea is to scan the sample at different tip sample distances and obtain the position and charge value of the object using reconstruction algorithms. The quantitative analysis here presented is a first step toward tomography for samples presenting “dilute” point charges creating non correlated signals by the interpretation of EFM signals. Lateral resolution, sensitivity (i.e. ability to detect an object), performance and limitations of EFM are also discussed in the paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schonenberger, C. and Alvarado, S. F., Physical Review Letters 65, 3162 (1990)Google Scholar
2. Riedel, C., Arinero, R., Ph, T., Ramonda, M., Leveque, G., Schwartz, G. A., Oteyza, D. G. d., Alegria, A., and Colmenero, J., Journal of Applied Physics 106, 024315 (2009)Google Scholar
3. Riedel, C., Sweeney, R., Israeloff, N. E., Arinero, R., Schwartz, G. A., Alegria, A., Tordjeman, P. and Colmenero, J., Applied Physics Letters, 96, 213110 (2010)Google Scholar
4. Riedel, C., Alegría, A., Schwartz, G. A., Arinero, R., Colmenero, J., Sáenz, J. J., Applied Physics Letters, 99, 023101 (2011)Google Scholar
5. Portes, L., Girard, P., Arinero, R., Ramonda, M., Review of Scientific Instruments, 77, 096101 (2006)Google Scholar
6. Belaïdi, S., Lebon, F., Girard, P., Leveque, G. and Pagano, S., Applied Physics A: Materials Science and Processing 66(0) p. S239S243 (1998)Google Scholar
7. Belaïdi, S., Girard, P., Leveque, G., J. Appl. Phys., 81(3), 10231030 (1997)Google Scholar
8. Sacha, G. M., Sahagun, E., and Saenz, J.J., Journal of Applied Physics, 101(2), p. 024310 (2007).Google Scholar
9. Durand, E., Electrostatique, tome III, Masson, Paris, p.233 (1966).Google Scholar
10. Sun, J., Schotland, J. C., Hillenbrand, R., and Carney, P. S., Applied Physics Letters 95, 121108 (2009).Google Scholar
11. Gramse, G., Casuso, J., Toset, J., Fumagalli, L., and Gomila, G., Nanotechnology 20, 395702 (2009)Google Scholar
12. Riedel, C., Arinero, R., Tordjeman, P., Lévêque, G., Schwartz, G. A., Alegria, A. and Colmenero, J., Phys. Rev. E, 81 010801(2010)Google Scholar
13. Zhao, M., Gu, X., Lowther, S. E., Park,C, C., Jean, Y. C. and Nguyen, T., Nanotechnology, 21 225702 (2010)Google Scholar