Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T16:28:53.142Z Has data issue: false hasContentIssue false

Three-Dimensional Organic Field-Effect Transistors: Charge Accumulation in their Vertical Semiconductor Channels

Published online by Cambridge University Press:  31 January 2011

M. Uno
Affiliation:
[email protected], TRI-Osaka, Izumi, Japan
I. Doi
Affiliation:
[email protected], Hiroshima University, Graduate School of Applied Chemistry, Higashi-Hiroshima, Japan
K. Takimiya
Affiliation:
[email protected], Hiroshima University, Graduate School of Applied Chemistry, Higashi-hiroshima, Japan
Jun Takeya
Affiliation:
[email protected], Osaka University, Dept. of Chemistry, Grad. School of Science, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan, +81-6-6850-5398, +81-6-6850-6797
Get access

Abstract

Three-dimensional organic field-effect transistors are developed with multiple vertical channels of organic semiconductors to gain high output current and high on-off ratio. High-mobility and air-stable dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films deposited on horizontally elongated vertical sidewalls have realized unprecedented high output current per area of 2.6 A/cm2 with the application of drain voltage -10 V and gate voltage -20 V. The on-off ratio is as high as 2.7×106. Carrier mobility of the organic semiconductor deposited on the vertical sidewalls is typically 0.30 cm2/Vs. The structure is built also on plastic substrates, where still considerable current modulation is preserved with high output current per area of 70 mA/cm2 and with high on-off ratio of 8.7×106. The performance exceeds practical requirements for applications in driving organic light-emitting diodes in active-matrix displays. The technique of gating with electric double layers of ionic liquid is also introduced to the three-dimensional transistor structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lin, Y. Y. Gundlach, D. J. Nelson, S. F. and Jackson, T. N. IEEE Electron Device Lett. 18, 606 (1997).Google Scholar
2 Klauk, H. Halik, M. Zschieschang, U. Schmid, G. Radlik, W. and Weber, W. J. Appl. Phys. 92, 5259 (2002).Google Scholar
3 Anthony, J. E. Brooks, J. S. Eaton, D. L. and Parkin, S. R. J. Am. Chem. Soc. 123, 9482 (2001).Google Scholar
4 Yamamoto, T. and Takimiya, K. J. Am. Chem. Soc. 129, 2224 (2007).Google Scholar
5 Podzorov, V. Menard, E. Borissov, A. Kiryukhin, V. Rogers, J. A. and Gershenson, M. E. Phys. Rev. Lett. 93, 086602 (2004).Google Scholar
6 Takeya, J. Yamagishi, M. Tominari, Y. Hirahara, R. Nakazawa, Y. Nishikawa, T. Kawase, T. and Shimoda, T. Appl. Phys. Lett. 90, 102120 (2007).Google Scholar
7 Jurchescu, O. D. Popinciuc, M. van Wees, B. J., and Palstra, T. T. M. Adv. Mater. (Weinheim, Ger.) 19, 688 (2007).Google Scholar
8 Uno, M. Tominari, Y. and Takeya, J. Appl. Phys. Lett. 93, 173301 (2008).Google Scholar
9 Uno, M. Doi, I. Takimiya, K. and Takeya, J. Appl. Phys. Lett. 94, 103307 (2009).Google Scholar
10 Ono, S. Seki, S. Hirahara, R. Tominari, Y. and Takeya, J. Appl. Phys. Lett. 92, 103313 (2008).Google Scholar
11 Kudo, K. Wang, D. X. Iizuka, M. Kuniyoshi, S. and Tanaka, K. Thin Solid Films 331, 51 (1998).Google Scholar
12 Parashkov, R. Becker, E. Hartmann, S. Ginev, G. Schneider, D. Krautwald, H. Dobbertin, T. Metzdorf, D. Brunetti, F. Schildknecht, C. Kammoun, A. Brandes, M. Riedl, T. Jo-hannes, H.-H., and Kowalsky, W. Appl. Phys. Lett. 82, 4579 (2003).Google Scholar
13 Naruse, H. Naka, S. and Okada, H. Appl. Phys. Express 1, 011801 (2008).Google Scholar
14Here, the requirement for the on current is given by the assumption that each organic lightemitting diode (OLED) with a certain bright area should be driven by the OFET that occupy at most the same area. Since OLEDs are to be driven in the condition of 3-6 cd/A for sufficient lifetime, the current for achieving usual brightness of 200-1000 cd/m2 is calculated to be typically ̃ 100 A/m2, which equals to 10 mA/cm2 and 1 μA per 100 μm x 100 μm area. See for example, Vaeth, K. M. Information Display 19, 12 (2003).Google Scholar
15 Haddock, J. N. Zhang, X. Zheng, S. Zhang, Q. Marder, S. R. and Kippelen, B. Org. Electron. 7, 45 (2006).Google Scholar