Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:52:17.091Z Has data issue: false hasContentIssue false

Three Dimensional Surface Waviness of an Epitaxial Layer Due to Surface Diffusion Induced by Interface Misfit Dislocations

Published online by Cambridge University Press:  21 February 2011

F. Jonsdottir*
Affiliation:
Institute for Mechanics and Materials, University of California, San Diego La Jolla, CA 92093-0404
Get access

Abstract

It has been observed that, for some strained epitaxial layer systems, the surface of the layer develops roughness or waviness which correlates spatially with the positions of underlying interface misfit dislocations which partially relax the elastic mismatch strain. A model based on redistribution of mass by surface diffusion is analyzed to estimate the waviness of the three dimensional thermodynamic equilibrium surface due to intersecting arrays of interface misfit dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fitzgerald, E. A., Ast, D. G., Kirchner, P. D., Pettit, G. D. and Woodall, J. M.. J. Appl. Phys. 63, 693 (1988).Google Scholar
2. Harvey, S. E., Angelo, J. E. and Gerberich, W. W. in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. Jr. and Borgeson, P. (Mater. Res. Soc. Proc. 308, Pittsburgh, PA, 1993) pp. 433438.Google Scholar
3. Fitzgerald, E. A., Xie, Y. H., Monroe, D., Silverman, P.J., Kuo, J. M., Kortan, A. R., Thiel, F. A. and Weir, B. E., J. Vac. Sci. Tech. 10, 1807, (1992).Google Scholar
4. Hsu, J.W.P., Fitzgerald, E. A., Xie, Y. H., Silverman, P.J. and Cardillo, M. J., in Scanning Probe Microscopies II, edited by Williams, C. C., (Proceedings of the SPIE - The International Society for Optical Engineering 1855, Bellingham, WA, 1993) pp. 118128.Google Scholar
5. Shiryaev, S. Y., Jensen, F. and Petersen, J. W., Appl. Phys. Lett. 64, 3305 (1994).Google Scholar
6. Cullis, A. G., Robbins, D. J., Pidduck, A. J., and Smith, P. W., J. Crystal Growth 123, 333, (1992).Google Scholar
7. Cullis, A. G., Robbins, D. J., Barnett, S. J., and Pidduck, A. J., J. Vac. Sci. Tech. 12, 1924, (1994).Google Scholar
8. Freund, L. B., Bower, A. and Ramirez, J. C. in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C. et al, (Mater. Res. Soc. Proc. 130, Pittsburgh, PA, 1989), pp. 139152.Google Scholar
9. Jonsdottir, F. and Freund, L. B., Mechanics of Materials, (to appear).Google Scholar
10. Herring, C., in Structure and Properties of Solid Surfaces, edited by Gomer, R. and Smith, C. S. (Univ. of Chicago Press, Chicago, 1953), p. 5.Google Scholar
11. Rice, J. R. and Chuang, T. J., J. Amer. Ceramic Soc. 64, 46 (1981).Google Scholar
12. Freund, L. B., in Advances in Applied Mechanics, vol. 30, edited by Hutchinson, J. W. and Wu, T. Y. (Academic Press, Boston, 1994), p. 1.Google Scholar
13. Gao, H., J. Mech. Phys. Solids 39, 443 (1991).Google Scholar
14. Freund, L. B., Int. J. Solids Struc.(to appear).Google Scholar