Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T02:23:13.933Z Has data issue: false hasContentIssue false

Three Dimensional Structure and Liquid Transport Behavior of Siloxane Gels with Co-continuous Macropores

Published online by Cambridge University Press:  01 February 2011

Haruko Saito
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku-katsura, Nishikyo-ku, Kyoto 615–8510, Japan
Kazuki Nakanishi
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku-katsura, Nishikyo-ku, Kyoto 615–8510, Japan
Kazuyuki Hirao
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku-katsura, Nishikyo-ku, Kyoto 615–8510, Japan
Hiroshi Jinnai
Affiliation:
Polymer Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan.
Kei Morisato
Affiliation:
Kyoto Monotech Co., Nishikyo-ku, Kyoto, Japan.
Hiroyoshi Minakuchi
Affiliation:
Kyoto Monotech Co., Nishikyo-ku, Kyoto, Japan.
Get access

Abstract

The geometrical properties of co-continuous macroporous silica monoliths have been studied by laser scanning confocal microscopy (LSCM) and a comparison with mercury intrusion method has been made. From three-dimensional images obtained by LSCM observation, probability density distributions of curvatures have been calculated on gel skeleton surface by the “sectioning and fitting method”. Measured liquid transport behavior in macroporous siloxane gels has been related to the obtained curvature distributions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERRENCES

[1] Minakuchi, H., Nakanishi, K., Soga, N., Ishizuka, N., Tanaka, N., Anal. Chem. 68 (1996) 3498.Google Scholar
[2] Svec, F.; Frechet, J. M. Anal. Chem. 68 (1992) 820.Google Scholar
[3] Bidlingmaier, B., Unger, K. K., von Doehren, N., J. Chromatogr. 832 (1999) 11.Google Scholar
[4] Bristow, P. A., Knox, J. H., Chromatographia 10 (1977) 279.Google Scholar
[5] Nakanishi, K., Sol-Gel, J. Sci. & Tech. 19 (2000) 65.Google Scholar
[6] Leinweber, F. C., Lubda, D., Cabrera, K., Tallarek, U., Anal. Chem. 74 (2002) 2470.Google Scholar
[7] Tanaka, N., Kobayashi, H., Ishizuka, N., Minakuchi, H., Nakanishi, K., Hosoya, K., Ikegami, T., J. Chromatogr. A 965 (2002) 35.Google Scholar
[8] Tennikova, T. B., Belenkii, B. G., Svec, F., J. Liq. Chromatogr. 13 (1990) 63.Google Scholar
[9] Strancar, A., Koselj, P., Scwinn, H., Josic, Dj., Anal. Chem. 68 (1996) 3483.Google Scholar
[10] Vervoort, N., Gzil, P., Baron, G. V., Desmet, G., Anal. Chem. 75 (2003) 843.Google Scholar
[11] Gzil, P., Vervoort, N., Baron, G. V., Desmet, G., J. Sep. Sci. 27 (2004) 887.Google Scholar
[12] Nishikawa, Y., Jinnai, H., Koga, T., Hashimoto, T., Hyde, S.T., Langmuir 14 (1998) 1242.Google Scholar
[13] Schoen, A. NASA Tech Note 1970, D-5541.Google Scholar
[14] Jinnai, H., Nishikawa, Y., Morimoto, H., Koga, T., Hashimoto, T., Langmuir 16 (2000) 4380.Google Scholar
[15] Rayleigh, L., Proc. R. Soc. London 29 (1879) 71.Google Scholar
[16] Tomokita, S., Proc. Soc. London, Ser. A 140 (1935) 322.Google Scholar
[17] Binder, K., Stauffer, D., Phys. Rev. Lett. 33 (1974) 1006.Google Scholar