Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T09:14:55.348Z Has data issue: false hasContentIssue false

Three Dimensional Hydrogen Microscopy in Diamond

Published online by Cambridge University Press:  01 February 2011

Günther Dollinger
Affiliation:
Universität der Bundeswehr München, LRT 2, D-85579 Neubiberg, Germany
Patrick Reichart
Affiliation:
University of Melbourne, School of Physics, Victoria 3010, Australia
Andreas Bergmaier
Affiliation:
Universität der Bundeswehr München, LRT 2, D-85579 Neubiberg, Germany
Andreas Hauptner
Affiliation:
Technische Universität München, Physik Department E12, 85748 Garching
Christoph Wild
Affiliation:
Frauenhofer Institut Angewandte Festkörperphysik, 79108 Freiburg
Get access

Abstract

We introduce proton-proton scattering at a microprobe of 17 MeV protons to quantitatively image three dimensional hydrogen distributions in polycrystalline diamond at a lateral resolution better than 1 μm and high sensitivity. The images show that most of the hydrogen of a <110>-textured undoped polycrystalline diamond film is located at grain boundaries. The average amount of hydrogen is (8.1±1.5)·1014 atoms/cm2 along the grain boundaries which corresponds to about a third of a monolayer. The content within the grain is below the detection limit of 1.4·1016 atoms/cm2 (0.08 at-ppm).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bergmaier, A., Dollinger, G., Aleksov, A., Gluche, P., Kohn, E., Surf. Sci. 481 (2001) L433.Google Scholar
2 Kawarada, H., Surface Science Reports 26 (1996) 205.Google Scholar
3 Landstrass, M.I., Ravi, K.V., Appl. Phys. Lett. 55 (1989) 1391.Google Scholar
4 Maki, T., Shikama, S., Komori, M., Sakaguchi, Y., Sakuta, K., and Kobayashi, T., Jpn. J. Appl. Phys. 131 (1992) L1446 Google Scholar
5 Hayashi, K., Yamanaka, S., Ohushi, H., Kajimura, K., Appl. Phys. Lett. 68 (1996) 376.Google Scholar
6 Krane, E.V., Phys. Rev. 127 (1962) 131.Google Scholar
7 Reichart, P., Dollinger, G., Datzmann, G., Hauptner, A., Hertenberger, R., Körner, H.-J., Nucl. Instr. and Meth. B 210 (2003) 135.Google Scholar
8 Reichart, P., Dollinger, G., Bergmaier, A., Datzmann, G., Hauptner, A., Körner, H.-J., Krücken, R., Nucl. Instr. and Meth. B 219-220 (2004) 980.Google Scholar
9 Reichart, P., Datzmann, G., Hauptner, A., Hertenberger, R., Wild, C., Dollinger, G., Science 306 (2004) 1537.Google Scholar
10 Maier, F. et al., Surf. Sci. 443 (1999) 177.Google Scholar
11 Dollinger, G., Reichart, P., Datzmann, G., Hauptner, A., Körner, H.-J., Schmelmer, O., Appl. Phys. Lett. 82 (2003) 148.Google Scholar