Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T18:08:46.905Z Has data issue: false hasContentIssue false

Threading and Interlocking: A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility

Published online by Cambridge University Press:  01 February 2011

Lokman Torun
Affiliation:
[email protected], TUBITAK MARMARA RESEARCH CENTER, Materials Institute, P. K. 21, Gebze, Kocaeli, N/A, Turkey, (90) 262 677 3087
Alex J. Paraskos
Affiliation:
[email protected], MIT, Department of Chemistry, 77 Mass Ave, Cambridge, MA, 02139, United States
Nicholas T. Tsui
Affiliation:
[email protected], MIT, Department of Materials Science and Engineering, 77 Mass Ave., Cambridge, MA, 02139, United States
Timothy M. Swager
Affiliation:
[email protected], MIT, Department of Chemistry, 77 Mass Ave, Cambridge, MA, 02139, United States
Edwin L. Thomas
Affiliation:
[email protected], MIT, Department of Materials Science and Engineering, 77 Mass Ave., Cambridge, MA, 02139, United States
Get access

Abstract

We have synthesized polyester systems containing pendant iptycene units and compared their mechanical/structural properties to a homologous reference polymer wherein benzene replaces iptycene units. Iptycenes have unique structural properties called internal molecular free volume (IMFV). The incorporation of iptycene into polyester backbones results in a polymer chain contour resembling “molecular barbed wire.” The contribution of iptycene to the mechanical properties of polyesters is significant and robust across concentration and processing conditions. The triptycene polyester films displayed a nearly 3-fold increase in Young's modulus, an approximately 3-fold increase in strength, and a more than 20-fold increase in strain to failure. We proposed that the presence of triptycene introduces two mechanisms for the enhancement of tensile mechanical properties: molecular threading and molecular interlocking.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Northolt, M. G., Baltussen, J. J. M., Schafferskorff, B., Polymer 36, 3485, (1995).Google Scholar
2 Northolt, M. G., Baltussen, J. J. M., J. Appl. Polym. Sci., 83, 508, (2002).Google Scholar
3 Sikkema, D. J., J. Appl. Polym. Sci., 83, 484, (2002).Google Scholar
4 Kikutani, T., J. Appl. Polym. Sci., 83, 559, (2002).Google Scholar
5 Uehara, H., Yamazaki, Y., Kanamoto, T., Polymer, 37, 57, (1996).Google Scholar
6 Flory, P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca (1953).Google Scholar
7 Young, R. J., Lovell, P., Introduction to Polymers, 2nd ed., Chapman and Hall, London 1991.Google Scholar
8 Fakirov, S., Evstatiev, M., Schultz, J. M., J. Appl. Polym. Sci., 42, 575, (1991).Google Scholar
9 Grijpma, D. W., Altpeter, H., Bevis, M. J., Feijen, J., Polym. Int., 51, 845, (2002).Google Scholar
10 Jang, J.-H., Ullal, C. K., Choi, T., Lemieux, M. C., Tsukruk, V. V., Thomas, E. L., Adv. Mater., 18, 2123, (2006).Google Scholar
11 Sikkema, D. J., Northolt, M. G., Pourdeyhimi, B., MRS Bull., 28, 579, (2003).Google Scholar
12 So, Y. H., Prog. Polym. Sci., 25, 137, (2000).Google Scholar
13 Wu, S. H., Polym. Int., 29, 229, (1992).Google Scholar
14 Paraskos, A. J. Ph.D. Thesis, MIT, 2003.Google Scholar
15 Tsui, N. T., Paraskos, A. J., Torun, L., Swager, T. M., and Thomas, E. L.. Macromolecules, 39, 3350, (2006).Google Scholar
16 Tsui, N. T., Torun, L., Pate, B. D., Paraskos, A. J., Swager, T. M., and Thomas, E.L.. Adv. Funct. Mater., 17, 1595, (2007).Google Scholar